• Title/Summary/Keyword: Unconstrained algorithm

Search Result 111, Processing Time 0.027 seconds

Visual Servo Navigation of a Mobile Robot Using Nonlinear Least Squares Optimization for Large Residual (비선형 최소 자승법을 이용한 이동 로봇의 비주얼 서보 네비게이션)

  • Kim, Gon-Woo;Nam, Kyung-Tae;Lee, Sang-Moo;Shon, Woong-Hee
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.4
    • /
    • pp.327-333
    • /
    • 2007
  • We propose a navigation algorithm using image-based visual servoing utilizing a fixed camera. We define the mobile robot navigation problem as an unconstrained optimization problem to minimize the image error between the goal position and the position of a mobile robot. The residual function which is the image error between the position of a mobile robot and the goal position is generally large for this navigation problem. So, this navigation problem can be considered as the nonlinear least squares problem for the large residual case. For large residual, we propose a method to find the second-order term using the secant approximation method. The performance was evaluated using the simulation.

  • PDF

Development of PPG Pillow System for Unconstrained Respiration and Heart Rate Monitoring during Sleep (수면 중 무구속적인 호흡 및 심박 수 측정을 위한 PPG 베개 시스템의 개발)

  • Cha, Ji-Young;Choi, Hyun-Seok;Shin, Jae-Yeon;Lee, Kyoung-Joung
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1101-1102
    • /
    • 2008
  • In this paper, we have developed PPG pillow system for unconstrained respiration monitoring during sleep. The system employs a pillow containing a PPG sensor and a simple respiration extraction algorithm. The results showed that the extracted respiratory rhythm was found to have close relations with the reference signal. The system has an advantage of processing simplicity. A follow-up study should be performed to evaluate the system in terms of breath intake.

  • PDF

Damping Layout Optimization to Reduce Structure-borne Noises in a Two-Dimensional Cavity (이차원 공동의 구조기인소음 저감을 위한 제진재의 최적배치)

  • Lee Doo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.805-812
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of unconstrained damping materials. For the analysis of structural-acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics oJ the viscoelastic materials with frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.

  • PDF

Reduction of Structure-borne Noises in a Two-Dimensional Cavity using Optimal Treatment of Damping Materials (제진재의 최적배치를 통한 이차원 공동의 구조기인소음 저감)

  • Lee, Doo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1581-1587
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of viscoelastic unconstrained damping materials. For the analysis of structural- acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics of the viscoelastic materials with respect to frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.

Generalized Predictive Control with Input Constraints (입력제약을 고려한 일반형 예측제어기법)

  • Kim, Chang-Hwoi;Ham, Chang-Shik;Lee, Sang-Jeong;Park, Sang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1196-1198
    • /
    • 1996
  • It is well known that the controller output limits have a significant effect on the closed loop system performance. GPC has many tuning-knobs which can he used to minimize actuator activity. Especially, increasing the control weighting $\lambda$ cuts down the controller output variance. Using this property, we propose the GPC with Input constraints(GPCIC) which is based on the relation between control weighting $\lambda$ and optimal solution of the unconstrained GPC. The GPCIC algorithm is the calculation of the optimal $\lambda$ such that the output of the unconstrained GPC is satisfied with the rate Ind the level constraint.

  • PDF

Finite Element Analysis of the Unconstrained Cylindrical Bending Process Considering Continuous Contact Treatment (연속 접촉 처리를 고려한 실린더 벤딩 성형 공정의 유한요소해석)

  • Kim T. J.;Yang D. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.547-552
    • /
    • 2005
  • In general, the sheet metal and die are described by finite elements for the simulation of the metal forming processes. Because the characteristics as continuum of the sheet metal are represented with triangles and rectangles, the errors occur inevitably in finite element analysis. Many contact schemes to describe the deformation modes exactly have been introduced in order to decrease these errors. In this study, a scheme for continuous contact treatment is proposed in order to consider the realistic behavior of contact phenomena during the forming process. The discrete mesh causes stepwise propagation of contact nodes of the sheet even though the contact region of the real forming process is altered very smoothly. It gives rise to convergence problem in case that the process, for example bending process, is sensitive to the contact between the sheet and the tools. The analysis of the unconstrained cylindrical bending process without blank holder is also presented in order to investigate the effect of the proposed algorithm.

ITERATIVE ALGORITHMS FOR THE LEAST-SQUARES SYMMETRIC SOLUTION OF AXB = C WITH A SUBMATRIX CONSTRAINT

  • Wang, Minghui;Feng, Yan
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.1-12
    • /
    • 2009
  • Iterative algorithms are proposed for the least-squares symmetric solution of AXB = E with a submatrix constraint. We characterize the linear mappings from their independent element space to the constrained solution sets, study their properties and use these properties to propose two matrix iterative algorithms that can find the minimum and quasi-minimum norm solution based on the classical LSQR algorithm for solving the unconstrained LS problem. Numerical results are provided that show the efficiency of the proposed methods.

  • PDF

Formulation of Seismic Drift Control Method (동적 변위 제어법의 정식화)

  • 박효선;박성무;권준혁
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.481-488
    • /
    • 1998
  • The drift and inter-story drift control method for steel structures subjected to seismic forces is formulated into a structural optimization problem in this paper. The formulated optimization problem with constraints on drift, inter-story drifts, and member strengthes are transformed into an unconstrained optimization problem. For the solution of the tranformed optimization problem an searching algorithm based on the gradient projection method utilizing gradient information on eigenvalues and eigenvectors are developed and presented in detail. The performance of the proposed algorithm is demonstrated by application to drift control of a verifying example.

  • PDF

Optimum Design of Power Screw Efficiency by Fuzzy Simplex Search Algorithm (퍼지 simplex search 알고리듬을 이용한 동력 스크류 효율의 최적설계)

  • Hyun, Chang-Hun;Lee, Byeong-Ki
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.19-28
    • /
    • 2002
  • The Nelder-Mead simplex algorithm has been one of the most widely used methods for the nonlinear unconstrained optimization, since 1965. Recently, the new algorithm, (so-called the Fuzzy Simplex Algorithm), with fuzzy logic controllers for the expansion, reflection and contraction process of this algorithm has been proposed. In this paper, this new algorithm is developed. And, the formulation for the optimum design of the power screw's efficiency is made. And then, the developed fuzzy simplex algorithm as well as the original one is applied to this optimum design problem. The Fuzzy simplex algorithm results in a faster convergence in this problem, as reported in other study, too.

  • PDF

Global Optimization Using Differential Evolution Algorithm (차분진화 알고리듬을 이용한 전역최적화)

  • Jung, Jae-Joon;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1809-1814
    • /
    • 2003
  • Differential evolution (DE) algorithm is presented and applied to global optimization in this research. DE suggested initially fur the solution to Chebychev polynomial fitting problem is similar to genetic algorithm(GA) including crossover, mutation and selection process. However, differential evolution algorithm is simpler than GA because it uses a vector concept in populating process. And DE turns out to be converged faster than CA, since it employs the difference information as pseudo-sensitivity In this paper, a trial vector and its control parameters of DE are examined and unconstrained optimization problems of highly nonlinear multimodal functions are demonstrated. To illustrate the efficiency of DE, convergence rates and robustness of global optimization algorithms are compared with those of simple GA.