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Visual Servo Navigation of a Mobile Robot Using
Nonlinear LLeast Squares Optimization for Large
Residual
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Abstract We propose a navigation algorithm using image-based visual servoing utilizing a fixed
camera. We define the mobile robot navigation problem as an unconstrained optimization problem to
minimize the image error between the goal position and the position of a mobile robot. The residual
function which is the image error between the position of a mobile robot and the goal position is
generally large for this navigation problem. So, this navigation problem can be considered as the
nonlinear least squares problem for the large residual case. For large residual, we propose a method to
find the second-order term using the secant approximation method. The performance was evaluated
using the simulation.
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1. Introduction

Visual feedback control is generally referred to as visual
servoing which is control method using visual information".
The image-based visual servoing is visual feedback control
to use the image error directly to control the robot with the
image Jacobian.

Many researchers have proposed visual servoing
algorithm for robotic manipulators?*!®), For visual
servoing of mobile robots, many researchers have
been focused on on-board  cameralIFIIIO]
Midorikawa et al. in [7] incorporated virtual image
plane acquired by sensor fusion of vision and encoder

in the proposed assist mobile robot system. Zhang et al.

in [11] proposed a visual motion planning algorithm
which can make motion plans directly in the image

P ATE AT AfoE
A1) Ao SIS

DR SaT 2R AT

(E-mail : kgw0510@kitech.re kr, robotnam@kitech.re kr, lsm@kitech.re.kr )

AW EATY R SEY 24 A7

(E-mail : shon@kitech.re.kr)

Fash A BgEE T

2

plane. For eye-to-hand configuration, Dixon et al. in
[6] proposed an asymptotic pose tracking controller
which is developed for a wheeled mobile robot with an
uncalibrated ceiling mounted camera system.

In this paper, the composite image Jacobian is
proposed using the kinematic model of a wheeled
mobile robot and the perspective transformation'. This
composite image Jacobian can be efficiently used for
image-based visual servoing of a wheeled mobile robot.
We also define the mobile robot navigation problem as
an unconstrained optimization problem to minimize the
image error between the goal position and the position
of a mobile robot in the image plane. Nonlinear least
squares algorithm has been adopted for solving this
unconstrained optimization problem. The residual
function which is the image error between the position
of a mobile robot and the goal position is generally
large for this navigation problem. For large residual, we
propose an efficient method to find the second-order
term using the secant approximation method.

The paper is organized as follows. In section 2,
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Fig.1. Definition of coordinate systems: the global reference
frame, {G}, the robot reference frame, {R}

{C}: Camera frame
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X¢ {G}: Global reference frame

Fig.2. Configuration of robot and camera system

visual servoing for mobile robot navigation is
presented.  Perspective transformation is also
addressed for the task space to the image plane.
Section 3 presents image-based visual servo
navigation using nonlinear least squares optimization
method for large residual. In order to evaluate the
proposed visual servoing, some simulation results are
shown in Section 4. Finally, brief conclusions are
presented in Section 5.

2. Visual Servoing for Mobile Robot Navigation

2.1 Kinematics for Differential Drive Robot System

Kinematics is the most basic study about mechanical
behavior of robot system. Relative position of mobile
robots can be estimated using kinematic models.

Kinematics for mobile robots is somewhat different
from robot manipulators. Robot manipulators can be

considered to be more complex than mobile robot in
some way because standard robot manipulators
generally have six or more joints, whereas differential
drive robots have only two wheels. A robot
manipulator is fixed to the environment; therefore the
pose of its end effector can be achieved by the relation
between its end effector and its fixture. However, a
mobile robot is not fixed to the environment; therefore
its pose can be achieved in its environment.

The major difference between a mobile robot and a
robot manipulator is the method of position estimation.
For the case of a robot manipulator, the pose of its end
effector can be measured by the kinematics of the
robot and the position of all intermediate joints. When
we know the position of all joints, the pose of the
robot end effector is always measurable. However, we
cannot directly measure the pose of a mobile robot
instantaneously because a mobile robot can move by
itself in its environment.

The pose of a mobile robot in the global reference
frame can be defined as shown in Fig. 1 and Fig. 2 as:

qR:[xR Yr QR]T ()

where xz, yr, and 6z denote the position and
orientation of a mobile robot, respectively.

The kinematic model of a differential drive robot
with wheel diameter r is shown by using Jacobian

matrix as'*!’";

Gr =y @
rcosf,/2 rcosd,/2 2)

where J,, =|rsinf,/2 rsin@,/2
94 r/W

where ¢ is the rotating speed of each wheel, ¢ and
¢, and W is the distance between two wheels.

Using the linear and angular velocity of a mobile
robot, the speed of a mobile robot can be acquired as:

cosd, 0
_— Ve s 3)
gr=T(qz)- where T(qp)=|sing, 0
wR
0 1

where vz and wp, are the linear and angular velocity of
a mobile robot, respectively.
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Fig.3 The control architecture of the proposed image-
based visual servo control system
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Fig.4 The simulation results for the zero residual case
(R(pk)=0) when the robot pose is [100 100 0°]T: (a) the
trajectory of a mobile robot, and (b) the pixel error norm

2.2 Perspective Transformation for the Task Space to
the Image Plane
The kinematic model in the image plane can be

22 ASHE 01§ o)F

23] H)FY AR YmAle]ld 329

Image plane
480 -
400 = 4
\Gna\ position
380t V\ ]
t=35.ls
—
. 300+ 4
X
2 oml ]
7]
=
® 200 4
> Initizl position
180 | of & mobile mbot i
100+ Initial origntation |4
T~ t=0.9s of & mobile robot:
S0+
—>» 0d3g
0 L c L L 1 n
o 100 200 300 400 500 &0
X axis (pixel)
(a)
450
T
=
=
E
c
c
=
g
w 0 b b
Canvergence titme
t=59s) |

10 12 14 16 18 20
Time (sec)

(b)
Fig.5. The simulation results for the large residual case

(R(pk)#0) when the robot pose is [100 100 0°IT: (a) the
trajectory of a mobile robot, and (b) the pixel error norm

modeled using the similar manner in the previous
section. The pose of a mobile robot in the image plane
as shown in Fig. 2 can be defined as:

fR:[xR Vr gR]T “4)

where %,, y,, and @, denote the position and

orientation of a mobile robot in the image plane,
respectively.

The configuration of robot and camera system is
shown in Fig. 2. The camera is fixed on the ceiling and
its image plane is assumed to be parallel to the plane
of the robot workspace. And we assume that the origin
and the axes in the task space correspond to the origin
and the axes in the image plane.



330 =ZHXFes]| =X A28 A435(2007. 9)

The kinematic model of a mobile robot in the image
plane is shown by using the linear and angular velocity
in the image plane as:

_ cos@, 0

F-T Vr T(f)=|sind ®)
fx —T(fR)'[a) } where T(f;)=|siné, 0
N 0 1

where v, and g, are the linear and angular velocity of

a mobile robot in the image plane, respectively.

In order to find the position and orientation of a
robot in the image plane, we know the relationship
between the position in the task space and the position
in the image plane. The position of a robot in the
image plane can be acquired using the position of a
robot in the task space by the perspective
transformation which projects 3-D points onto a plane

as:
_ | =7 (6)
Yr h| 0 k, |y

where 4 is the focal length of the camera and £, &, are
the conversion parameters (unit: pixel/m) to convert
the unit of the task space to the pixel level in the
image plane.

We can find the Jacobian matrix which represents
the relationship between the linear and angular
velocity in the task space and the linear and angular
velocity in the image space as follows:

ol B G

where J, = Lcos 6, cos 0, + Lsin 6, sin 6,
@ B

B

a 2 ;2
J, =—cos 0R+;s1n 6,

(7

where « and g are A-k,/h and A-k,/h, respectively!®.

The final goal of this section is to find the
composite image Jacobian which represents the
relationship between the speed of wheels of a
mobile robot and the robot's overall speed in the
image plane. A mobile robot can be directly
controlled in the image plane using the composite

image Jacobian, which is called the image-based
visual servo control.
The composite image Jacobian, J e R*?, can be

acquired as:

=T (1) Ik T G) S 9=, @ ®

where T'(gz) is the pseudo inverse matrix of T(gg) as
T (qe) =(T"-T)"T".

The rotational speed of wheels of a mobile robot can
be directly related to the overall speed of a mobile
robot in the image plane using the composite image
Jacobian in (8).

3. Nonlinear Least Squares Optimization for
Mobile Robot Navigation

We define the visual servo navigation of a mobile
robot as the unconstrained optimization problem to
move a mobile robot to a goal position. The nonlinear
least squares optimization method is used for solving
this problem. Fig. 3 shows the control architecture of
the image-based visual servo control system.

3.1 Cost Function for Visual Servo Navigation

Considering the eye-to-hand vision system, the
camera can observe the pose of the mobile robot in the
image plane as shown in Fig. 3. In the image plane,
the goal position is virtually represented by /* and the
pose of the mobile robot is represented by fz(¢) as the
function of the robot wheel variables, ¢. The control
problem which is to move a mobile robot to a goal
position can be defined as the minimization of the
image error.

In order to minimize the image error between the
goal position and the pose of the mobile robot, we
define the cost function as:

Blp)= o) do) where do)=f(o)—1 ©

which is defined by the square of the image error. This
cost function is a nonlinear function because the image
feature of a mobile robot is determined by the complex
geometric relationship.
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3.2 Full Newton’s Method for Nonlinear Least Squares
Optimization

The nonlinear least squares optimization problem for
moving a mobile robot toward a goal position can be
defined as:

min £(p) = min (o) e(p) (10)

peR" peR"

which is minimized at the robot joint configuration, ¢,
satisfying the equation, dE(¢")/0p=0. If we assume the
linear model in the neighborhood at @, the cost

function can be approximated using the Taylor series
expansion as:

E(p)=E(@)+VE(@)-(p-p) (11)

If we assume that the cost function is the second
order differentiable for ¢, the gradient of the
approximation model is shown as:

) _yr@)ivie@)p-7) (12
op

We define the composite image Jacobian of robot,
Jo(9)= Ofr(9)/0p, in (8). The cost function can be the
minimizer of the cost function if the gradient of the
approximation model at ¢, is zero. The iterative form
of the joint value to minimize the cost function
becomes:

Drs1 =P, _(J¢(¢k)TJ¢(¢7k)+R((Pk))7lj(p((0k)re(€0k)
(13)

where the residual

R(p) =V, (@) elp)-

term, R(p) is

33 Finding Residual Term wusing Secant
Approximation Method for Large Residual

The residual function which is the image error
between the position of a mobile robot and the goal
position is generally large for this navigation problem.
So, this navigation problem can be considered as the
large residual case for nonlinear least squares problem.

The term, R(p), in (13) is difficult to compute
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analytically because it contains the Hessian term of the
image error. Therefore, this term has been commonly
ignored in some researches!”. We propose the method
to estimate the residual term for more precise
modeling using the secant approximation method.

We have to compute the Hessian matrix of the robot

feature vector, V7 £, (@), in order to find the gradient
of the composite image Jacobian of a mobile robot.

Using the secant approximation method, the iterative
form of R(¢p) at ¢, can be calculated as follows:

_ (Jgo (¢k )_ J, (%H ))T e((ﬂk )((ﬂk ~Pra )T
R( ‘ ) - (§0k ~ P )T (Wk ~ P ) "

4, Performance Analysis of Visual Servo
Navigation

The proposed methods were applied on a differential
drive mobile robot for the eye-to-hand configuration.
The simulation was performed for the algorithm to
find the term, R(9), for the large residual case and the
results were compared with the results for the zero
residual case.

A mobile robot is nonholonomic system. Therefore,
performance of navigation is greatly affected by the
orientation data of a mobile robot at the initial position.
Therefore, the simulation was performed for different
orientations at the same position of a mobile robot.

The initial position of a mobile robot is (100, 100)
and the goal position is (400, 400) in the image plane.
The sampling time is 100 ms. The steady-state is

defined as the state after achieving leCp, ), < 10

pixels. In this simulation, the observation noise was
added for the robot pose in (4). The variance of the
observation noise was set to (2 pixels, 2 pixels, 0.1°).
Fig. 4 and Fig. 5 present the results for both the zero
residual case and the large residual case when the
initial pose of a mobile robot is [100 100 0°],
respectively. For the zero residual case, the average
steady-state error norm in pixel is 12.0776 pixels and
the convergence time is 10.9 sec as shown in Fig. 4 (a).
For the large residual case, however, the average
steady-state error norm in pixel is 3.407 pixels and the
convergence time is 5.9 sec as shown in Fig. 5 (a). The
trajectory of a mobile robot for both cases is shown in
Fig. 4 (b) and Fig. 5 (b). The heading direction for the
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Fig.6. The comparison of the results for the zero residual

case and for the large residual case according to the
different orientation of a mobile robot: (a) the convergence
time, and (b) the average steady-state error

large residual case has been adjusted faster than the
heading direction for the zero residual case toward the
goal position (about 45°) as shown in Fig. 4 (b) and
Fig. 5 (b). This is one reason of fast convergence time
and small steady-state error for the large residual case.

According to the simulation, the results for the large
residual case show better performance than the results
for the zero residual case. The simulation performed
100 iterations under the same condition for each
orientation. Fig. 6 shows the results of the
convergence time and the average steady-state error
for the zero residual case and the large residual case.
The mean and the standard deviation of the
convergence time have been acquired through 100
iterations for each orientation. These results are

plotted in Fig. 6. The convergence time for the large
residual case is shorter than the convergence time for
the zero residual case as shown in Fig. 6 (a). However,
the results of the convergence time for both cases are
almost similar when the initial heading direction of a
mobile robot is 45°. For the average steady-state error,
the results for both cases are also similar when the
initial heading direction of a mobile robot is 45° as
shown in Fig. 6 (b). Except these results, the average
steady-state error for the large residual case is smaller
than the average steady-state error for the zero residual
case. When the initial heading direction of a mobile
robot is 45°, the orientation term of the image error is
nearly zero. Through the results, we can see that the
term, R(p), affects the orientation of a mobile robot.
The composite image Jacobian in (8) has only the
information of the position error. However, the term,
R(p), includes the information of the position and
orientation error. Therefore, the term, R(p),
dominantly affects the fast convergence of the
orientation error in (13).

5. Conclusions

We propose a navigation algorithm using image-
based visual servoing utilizing a fixed camera.
Nonlinear least squares algorithm was adopted for
solving the unconstrained optimization problem. The
composite image Jacobian was applied to nonlinear
least squares algorithm. For large residual, an efficient
method was also proposed wusing the secant
approximation method in order to find the second-
order term. The simulation results showed the validity
of the proposed image-based visual servoing algorithm.
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