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Abstract We propose a navigation algorithm using image-based visual servoing utilizing a fixed 
camera. We define the mobile robot navigation problem as an unconstrained optimization problem to 
minimize the image error between the goal position and the position of a mobile robot. The residual 
function which is the image error between the position of a mobile robot and the goal position is 
generally large for this navigation problem. So, this navigation problem can be considered as the 
nonlinear least squares problem for the large residual case. For large residual, we propose a method to 
find the second-order term using the secant approximation method. The performance was evaluated 
using the simulation.  
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1. Introduction 

 
Visual feedback control is generally referred to as visual 

servoing which is control method using visual information[1]. 
The image-based visual servoing is visual feedback control 
to use the image error directly to control the robot with the 
image Jacobian. 

Many researchers have proposed visual servoing 
algorithm for robotic manipulators[2][3][5]. For visual 
servoing of mobile robots, many researchers have 
been focused on on-board camera[7][8][9][10]. 
Midorikawa et al. in [7] incorporated virtual image 
plane acquired by sensor fusion of vision and encoder 
in the proposed assist mobile robot system. Zhang et al. 
in [11] proposed a visual motion planning algorithm 
which can make motion plans directly in the image 

plane. For eye-to-hand configuration, Dixon et al. in 
[6] proposed an asymptotic pose tracking controller 
which is developed for a wheeled mobile robot with an 
uncalibrated ceiling mounted camera system.  

In this paper, the composite image Jacobian is 
proposed using the kinematic model of a wheeled 
mobile robot and the perspective transformation[6]. This 
composite image Jacobian can be efficiently used for 
image-based visual servoing of a wheeled mobile robot. 
We also define the mobile robot navigation problem as 
an unconstrained optimization problem to minimize the 
image error between the goal position and the position 
of a mobile robot in the image plane. Nonlinear least 
squares algorithm has been adopted for solving this 
unconstrained optimization problem. The residual 
function which is the image error between the position 
of a mobile robot and the goal position is generally 
large for this navigation problem. For large residual, we 
propose an efficient method to find the second-order 
term using the secant approximation method.  

The paper is organized as follows. In section 2,  
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Fig.1. Definition of coordinate systems: the global reference 

frame, {G}, the robot reference frame, {R} 

 
Fig.2. Configuration of robot and camera system 

 
visual servoing for mobile robot navigation is 

presented. Perspective transformation is also 
addressed for the task space to the image plane. 
Section 3 presents image-based visual servo 
navigation using nonlinear least squares optimization 
method for large residual. In order to evaluate the 
proposed visual servoing, some simulation results are 
shown in Section 4. Finally, brief conclusions are 
presented in Section 5. 

 
2. Visual Servoing for Mobile Robot Navigation 

 
2.1 Kinematics for Differential Drive Robot System 

Kinematics is the most basic study about mechanical 
behavior of robot system. Relative position of mobile 
robots can be estimated using kinematic models.  

Kinematics for mobile robots is somewhat different 
from robot manipulators. Robot manipulators can be 

considered to be more complex than mobile robot in 
some way because standard robot manipulators 
generally have six or more joints, whereas differential 
drive robots have only two wheels. A robot 
manipulator is fixed to the environment; therefore the 
pose of its end effector can be achieved by the relation 
between its end effector and its fixture. However, a 
mobile robot is not fixed to the environment; therefore 
its pose can be achieved in its environment. 

The major difference between a mobile robot and a 
robot manipulator is the method of position estimation. 
For the case of a robot manipulator, the pose of its end 
effector can be measured by the kinematics of the 
robot and the position of all intermediate joints. When 
we know the position of all joints, the pose of the 
robot end effector is always measurable. However, we 
cannot directly measure the pose of a mobile robot 
instantaneously because a mobile robot can move by 
itself in its environment. 

The pose of a mobile robot in the global reference 
frame can be defined as shown in Fig. 1 and Fig. 2 as: 

 
[ ]TRRRR yxq θ=           (1) 

 
where xR, yR, and θR denote the position and 
orientation of a mobile robot, respectively. 

The kinematic model of a differential drive robot 
with wheel diameter r is shown by using Jacobian 
matrix as[6][7]: 
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where ϕ&  is the rotating speed of each wheel, rϕ&  and 

lϕ&  and W is the distance between two wheels. 

Using the linear and angular velocity of a mobile 
robot, the speed of a mobile robot can be acquired as: 
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where vR and ωR are the linear and angular velocity of 
a mobile robot, respectively. 
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Fig.3 The control architecture of the proposed image-

based visual servo control system 

 

 
 

(a) 

 
 

(b) 
Fig.4 The simulation results for the zero residual case 

(R(φk)=0) when the robot pose is [100 100 0°]T: (a) the 
trajectory of a mobile robot, and (b) the pixel error norm 

 
2.2 Perspective Transformation for the Task Space to 

the Image Plane 

The kinematic model in the image plane can be  

 
 

(a) 

 
 

(b) 
Fig.5. The simulation results for the large residual case 

(R(φk)≠0) when the robot pose is [100 100 0°]T: (a) the 
trajectory of a mobile robot, and (b) the pixel error norm 

 
modeled using the similar manner in the previous 
section. The pose of a mobile robot in the image plane 
as shown in Fig. 2 can be defined as: 

 

[ ]TRRRR yxf θ=            (4) 
 

where Rx , Ry , and Rθ  denote the position and 
orientation of a mobile robot in the image plane, 
respectively. 

The configuration of robot and camera system is 
shown in Fig. 2. The camera is fixed on the ceiling and 
its image plane is assumed to be parallel to the plane 
of the robot workspace. And we assume that the origin 
and the axes in the task space correspond to the origin 
and the axes in the image plane. 
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The kinematic model of a mobile robot in the image 
plane is shown by using the linear and angular velocity 
in the image plane as: 
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where Rv and Rω are the linear and angular velocity of 
a mobile robot in the image plane, respectively. 

In order to find the position and orientation of a 
robot in the image plane, we know the relationship 
between the position in the task space and the position 
in the image plane. The position of a robot in the 
image plane can be acquired using the position of a 
robot in the task space by the perspective 
transformation which projects 3-D points onto a plane 
as: 
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where λ is the focal length of the camera and ku, kv are 
the conversion parameters (unit: pixel/m) to convert 
the unit of the task space to the pixel level in the 
image plane.  

We can find the Jacobian matrix which represents 
the relationship between the linear and angular 
velocity in the task space and the linear and angular 
velocity in the image space as follows: 
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where α and β are λ·ku/h and λ·kv/h, respectively[6]. 
The final goal of this section is to find the 

composite image Jacobian which represents the 
relationship between the speed of wheels of a 
mobile robot and the robot's overall speed in the 
image plane. A mobile robot can be directly 
controlled in the image plane using the composite 

image Jacobian, which is called the image-based 
visual servo control. 

The composite image Jacobian, 23×∈ RJ ϕ , can be 

acquired as: 
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where T+(qR) is the pseudo inverse matrix of T(qR) as 
T+(qR) =(TT·T)-1·TT. 

The rotational speed of wheels of a mobile robot can 
be directly related to the overall speed of a mobile 
robot in the image plane using the composite image 
Jacobian in (8). 

 

3. Nonlinear Least Squares Optimization for 

Mobile Robot Navigation 

 

We define the visual servo navigation of a mobile 
robot as the unconstrained optimization problem to 
move a mobile robot to a goal position. The nonlinear 
least squares optimization method is used for solving 
this problem. Fig. 3 shows the control architecture of 
the image-based visual servo control system. 

 
3.1 Cost Function for Visual Servo Navigation 

Considering the eye-to-hand vision system, the 
camera can observe the pose of the mobile robot in the 
image plane as shown in Fig. 3. In the image plane, 
the goal position is virtually represented by f* and the 
pose of the mobile robot is represented by fR(φ) as the 
function of the robot wheel variables, φ. The control 
problem which is to move a mobile robot to a goal 
position can be defined as the minimization of the 
image error.  

In order to minimize the image error between the 
goal position and the pose of the mobile robot, we 
define the cost function as: 
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which is defined by the square of the image error. This 
cost function is a nonlinear function because the image 
feature of a mobile robot is determined by the complex 
geometric relationship.  
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3.2 Full Newton’s Method for Nonlinear Least Squares 

Optimization 

The nonlinear least squares optimization problem for 
moving a mobile robot toward a goal position can be 
defined as: 
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which is minimized at the robot joint configuration, φ*, 
satisfying the equation, ∂E(φ*)/∂φ=0. If we assume the 
linear model in the neighborhood at ϕ , the cost 
function can be approximated using the Taylor series 
expansion as: 
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If we assume that the cost function is the second 

order differentiable for φ, the gradient of the 
approximation model is shown as: 
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We define the composite image Jacobian of robot, 

Jφ(φ)= ∂fR(φ)/∂φ, in (8). The cost function can be the 
minimizer of the cost function if the gradient of the 
approximation model at φk is zero. The iterative form 
of the joint value to minimize the cost function 
becomes: 
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where the residual term, R(φ) is 
( ) ( )ϕϕϕ ϕ eJR T)()( ∇= . 

 
3.3 Finding Residual Term using Secant 

Approximation Method for Large Residual 
The residual function which is the image error 

between the position of a mobile robot and the goal 
position is generally large for this navigation problem. 
So, this navigation problem can be considered as the 
large residual case for nonlinear least squares problem. 

The term, R(φ), in (13) is difficult to compute 

analytically because it contains the Hessian term of the 
image error. Therefore, this term has been commonly 
ignored in some researches[2]. We propose the method 
to estimate the residual term for more precise 
modeling using the secant approximation method. 

We have to compute the Hessian matrix of the robot 
feature vector, )(2 ϕRf∇ , in order to find the gradient 
of the composite image Jacobian of a mobile robot. 
Using the secant approximation method, the iterative 
form of R(φ) at φk can be calculated as follows: 
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4. Performance Analysis of Visual Servo 

Navigation 
 
The proposed methods were applied on a differential 

drive mobile robot for the eye-to-hand configuration. 
The simulation was performed for the algorithm to 
find the term, R(φ), for the large residual case and the 
results were compared with the results for the zero 
residual case. 

A mobile robot is nonholonomic system. Therefore, 
performance of navigation is greatly affected by the 
orientation data of a mobile robot at the initial position. 
Therefore, the simulation was performed for different 
orientations at the same position of a mobile robot. 

The initial position of a mobile robot is (100, 100) 
and the goal position is (400, 400) in the image plane. 
The sampling time is 100 ms. The steady-state is 

defined as the state after achieving ≤
2

)( ke ϕ  10 
pixels. In this simulation, the observation noise was 
added for the robot pose in (4). The variance of the 
observation noise was set to (2 pixels, 2 pixels, 0.1°). 

Fig. 4 and Fig. 5 present the results for both the zero 
residual case and the large residual case when the 
initial pose of a mobile robot is [100 100 0°]T, 
respectively. For the zero residual case, the average 
steady-state error norm in pixel is 12.0776 pixels and 
the convergence time is 10.9 sec as shown in Fig. 4 (a). 
For the large residual case, however, the average 
steady-state error norm in pixel is 3.407 pixels and the 
convergence time is 5.9 sec as shown in Fig. 5 (a). The 
trajectory of a mobile robot for both cases is shown in 
Fig. 4 (b) and Fig. 5 (b). The heading direction for the  
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(a) 

 
 

(b) 
Fig.6. The comparison of the results for the zero residual 

case and for the large residual case according to the 

different orientation of a mobile robot: (a) the convergence 

time, and (b) the average steady-state error 
 
large residual case has been adjusted faster than the 

heading direction for the zero residual case toward the 
goal position (about 45°) as shown in Fig. 4 (b) and 
Fig. 5 (b). This is one reason of fast convergence time 
and small steady-state error for the large residual case. 

According to the simulation, the results for the large 
residual case show better performance than the results 
for the zero residual case. The simulation performed 
100 iterations under the same condition for each 
orientation. Fig. 6 shows the results of the 
convergence time and the average steady-state error 
for the zero residual case and the large residual case. 
The mean and the standard deviation of the 
convergence time have been acquired through 100 
iterations for each orientation. These results are 

plotted in Fig. 6. The convergence time for the large 
residual case is shorter than the convergence time for 
the zero residual case as shown in Fig. 6 (a). However, 
the results of the convergence time for both cases are 
almost similar when the initial heading direction of a 
mobile robot is 45°. For the average steady-state error, 
the results for both cases are also similar when the 
initial heading direction of a mobile robot is 45° as 
shown in Fig. 6 (b). Except these results, the average 
steady-state error for the large residual case is smaller 
than the average steady-state error for the zero residual 
case. When the initial heading direction of a mobile 
robot is 45°, the orientation term of the image error is 
nearly zero. Through the results, we can see that the 
term, R(φ), affects the orientation of a mobile robot. 
The composite image Jacobian in (8) has only the 
information of the position error. However, the term, 
R(φ), includes the information of the position and 
orientation error. Therefore, the term, R(φ), 
dominantly affects the fast convergence of the 
orientation error in (13). 

 
5. Conclusions 

 
We propose a navigation algorithm using image-

based visual servoing utilizing a fixed camera. 
Nonlinear least squares algorithm was adopted for 
solving the unconstrained optimization problem. The 
composite image Jacobian was applied to nonlinear 
least squares algorithm. For large residual, an efficient 
method was also proposed using the secant 
approximation method in order to find the second-
order term. The simulation results showed the validity 
of the proposed image-based visual servoing algorithm. 
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