• Title/Summary/Keyword: Unconstrained Damping Layer

Search Result 12, Processing Time 0.025 seconds

Length Optimization for Unconstrained Visco-elastic Damping Layer of Beams (비구속형 점탄성 제진층을 갖는 보의 제진층 길이 최적화)

  • Lee, Doo-Ho;Hwang, Woo-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.938-946
    • /
    • 2003
  • Length of an unconstrained viscoelastic damping layer on beams is determined to maximizeloss factor using a numerical search method. The fractional derivative model can describe damping characteristics of viscoelastic damping materials accurately, and is used to represent nonlinearity of complex modulus with frequencies and temperatures. Equivalent flexural rigidity of the unconstrained beam is obtained using Ross, Ungar, Kelvin[RUK] equation. The loss factors of partially covered unconstrained beam are calculated by a modal strain energy method. Optimal lengths of the unconstrained viscoelastic damping layer of beams are identified with ambient temperatures and thickness ratios of beam and damping layer by using a finite-difference-based steepest descent method.

Length Optimization for Unconstrained Visco-elastic Damping Layer of Beams (비구속형 점탄성 제진층을 갖는 보의 제진층 길이 최적화)

  • 이두호;황우석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.665-671
    • /
    • 2003
  • Length of an unconstrained viscoelastic damping layer on beams is determined to maximize loss factor using a numerical search method. The fractional derivative model can describe damping characteristics of the viscoelastic damping material, and is used to represent nonlinearity of complex modulus with frequencies and temperatures. Equivalent flexural rigidity of the unconstrained beam is obtained using Ross, Ungar, Kerwin(RUK) equation. The loss factors of partially covered unconstrained beam are calculated by a modal strain energy method. Optimal lengths of the unconstrained viscoelastic damping layer of beams are obtained with respect to ambient temperatures and thickness ratios of beam and damping layer.

  • PDF

Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses (동적응답을 최소화하는 비구속형 제진보의 제진부위 최적설계)

  • Lee, Doo-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.656-661
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beams is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. The loss factors of partially covered unconstrained beam are calculated by the modal strain energy method. Vibration responses are calculated by using the modal superposition method, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in minimizing vibration responses with unconstrained damping layer treatment.

  • PDF

Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses (진동응답을 최소화하는 비구속형 제진보의 제진 부위 최적설계)

  • Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.829-835
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beam is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. Vibration responses are calculated by using the modal superposition principle, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in suppressing nitration responses by means of unconstrained damping layer treatment.

Application of Strain Energy for Determining the Location of Damping Material (스트레인 에너지를 이용한 제진재 위치 결정)

  • Kim, Joong-Bae;Ryu, Kuk-Hyun;Park, Sang-Kyu;Lee, Sang-Jo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1199-1205
    • /
    • 2008
  • The vehicle design engineers have studied the method of applying damping materials to the vehicle bodies by computer simulations and experimental methods in order to improve the vibration and noise characteristics of the vehicles. The unconstrained layer damping, being concerned with this study, has two layers(base layer and damping layer) and proyides vibration control of the base layer through extensional damping. Generally this kind of surface damping method is effectively used in reducing structural vibration at frequencies beyond 150Hz. The most important thing is how to apply damping treatment with respect to location and size of the damping material. To solve these problems, the current experimental methods have technical limits which are cumbersome, time consuming, and expensive. This Paper proposes a method based on finite element method and it employes averaged ESE(element strain energy) percent of total of dash panel assembly for 1/1 octave band frequency range by MSC/NASTRAN. The regions of high ESE percent of total are selected as proposed location of damping treatment. The effect of damping treatment is analyzed by comparing the frequency response function of the SPCC bare Panel and the damping treated panels.

A Study on Optimum Design of an Unconstrained Damping Steel Plate by Using Viscoelastic Damping Material (점탄성 제진재를 이용한 비구속형 제진강판의 최적설계에 관한 연구)

  • 유영훈;양보석
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.493-501
    • /
    • 1995
  • Optimum design of a viscoelastic damping layer which is unconstrainedly cohered on a steel plate is discussed from the viewpoint of the modal loss factor. Themodal loss factor is analyzed by using the energy method to the base steel plate and cohered damping layer. Optimum distributions of the viscoelastic damping layer for modes are obtained by sequentially changing the position of a piece of damping layer to another position which contributes to maximizing the modal loss factors. Analytical procedure performed by using this method simulated for 3 fundamental modes of an edge-fixed plate. Simulated results indicate that the modal loss factor ratios can be increase by as much as 210%, or more, by optimizing the thickness distribution of the damping layer to two times of the initial condition which is entirely covered. Optimum configurations for the modes are revealed by positions where added damping treatments become most effective. The calculated results by this method are validated by comparison with the experimental results and the calculated results obtained by the Ross-Ungar-Kerwin's model in the case of the layer is uniformly treated over the steel plate.

  • PDF

An Experimental Study on Vibration Characteristics of Automotive Roof with Passive Constrained Layer Damping (수동구속감쇠층을 갖는 자동차루프의 진동특성에 대향 실험적 연구)

  • 이정균;김찬묵;강영규;사종성;홍성규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.613-617
    • /
    • 2004
  • This paper presents an experimental study on vibration characteristics of an automotive roof with viscoelastic material. The goal of the study is to extract modal parameters (natural frequency, loss factor, and mode shape) of automotive roof with unconstrained and constrained layer damping treatment. To determine the effective position of the viscoelastic patch on a roof, vibration tests have been carried out for two cases; Aluminum plate with viscoelastic patch on maximum strain energy, and aluminum plate with viscoelastic patch on nodal line. From the result of aluminum plate, it is found that the viscoelastic patch should be attached on the Place with maximum strain energy Part. For the automotive root five Patches of unconstrained or constrained viscoelastic material have been attached on the position of maximum strain energy. This paper addresses that the proper position of viscoelastic patch is very important and the concept of maximum strain energy may be a good criterion f3r the placement of viscoelastic patch.

  • PDF

Optimal Distribution of Viscoelastic Material for Transient Vibration Suppression of a Flexible Beam (유연보의 과도 진동 감쇠를 위한 점탄성 재료의 최적 분포)

  • Kim, Tae-Woo;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.605-610
    • /
    • 2002
  • Eigenvalues are taken as performance criteria for structural damping design using viscoelastic material. Given material properties, optimal distribution of damping material is sought based on eigenvalue sensitivity. For eigenanalysis of frequency dependent viscoelastic material treated structures, Golla-Mushes-McTavish (GHM) model is used and some dominant modes are chosen for consideration. To avoid the intensity of computation caused by increased problem size, an alternative approximate method is proposed which uses elastic modes and can be applied under small damping assumption. A cantilever beam treated with unconstrained viscoelastic layer is tested and optimal distribution of thickness of the layer is illustrated. Partial coverage configurations are compared with the one-sided full coverage case.

  • PDF

Damping Layout Optimization to Reduce Structure-borne Noises in a Two-Dimensional Cavity (이차원 공동의 구조기인소음 저감을 위한 제진재의 최적배치)

  • Lee Doo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.805-812
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of unconstrained damping materials. For the analysis of structural-acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics oJ the viscoelastic materials with frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.

  • PDF

Reduction of Structure-borne Noises in a Two-Dimensional Cavity using Optimal Treatment of Damping Materials (제진재의 최적배치를 통한 이차원 공동의 구조기인소음 저감)

  • Lee, Doo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1581-1587
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of viscoelastic unconstrained damping materials. For the analysis of structural- acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics of the viscoelastic materials with respect to frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.