• 제목/요약/키워드: Unconfined strength test

검색결과 336건 처리시간 0.022초

Assessment of the unconfined compression strength of unsaturated lateritic soil using the UPV

  • Wang, Chien-Chih;Lin, Horn-Da;Li, An-Jui;Ting, Kai-En
    • Geomechanics and Engineering
    • /
    • 제23권4호
    • /
    • pp.339-349
    • /
    • 2020
  • This study investigates the feasibility of using the results of the UPV (ultrasonic pulse velocity) test to assess the UCS (unconfined compressive strength) of unsaturated soil. A series of laboratory tests was conducted on samples of unsaturated lateritic soils of northern Taiwan. Specifically, the unconfined compressive test was combined with the pressure plate test to obtain the unconfined compressive strength and its matric suction (s) of the samples. Soil samples were first compacted at the designated water content and subsequently subjected to the wetting process for saturation and the following drying process to its target suction using the apparatus developed by the authors. The correlations among the UCS, s and UPV were studied. The test results show that both the UCS and UPV significantly increased with the matric suction regardless of the initial compaction condition, but neither the UCS nor UPV obviously varied when the matric suction was less than the air-entry value. In addition, the UCS approximately linearly increased with increasing UPV. According to the investigation of the test results, simplified methods to estimate the UCS using the UPV or matric suction were established. Furthermore, an empirical formula of the matric suction calculated from the UPV was proposed. From the comparison between the predicted values and the test results, the MAPE values of UCS were 4.52-9.98% and were less than 10%, and the MAPE value of matric suction was 17.3% and in the range of 10-20%. Thus, the established formulas have good forecasting accuracy and may be applied to the stability analysis of the unsaturated soil slope. However, further study is warranted for validation.

Study of geotechnical properties of a gypsiferous soil treated with lime and silica fume

  • Moayyeri, Neda;Oulapour, Masoud;Haghighi, Ali
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.195-206
    • /
    • 2019
  • The gypsiferous soils are significantly sensitive to moisture and the water has a severe destructive effect on them. Therefore, the effect of lime and silica fume addition on their mechanical properties, when subjected to water, is investigated. Gypsiferous soil specimens were mixed with 1, 2 and 3% lime and 1, 3, 5 and 7% silica fume, in terms of the dry weight of soil. The specimens were mixed at optimum moisture content and cured for 24 hours, 7 and 28 days. 86 specimens in the sizes of unconfined compression strength test mold were prepared to perform unconfined compressive strength and durability tests. The results proved that adding even 1% of each of these additives can lead to a 15 times increase in unconfined compressive strength, compared with untreated specimen, and this increases as the curing time is prolonged. Also, after soaking, the compressive strength of the specimens stabilized with 2 and 3% lime plus different percentages of silica fume was considerably higher than before soaking. The durability of the treated specimens increased significantly after soaking. Direct shear tests showed that lime treatment is more efficient than silica fume treatment. Moreover, it is concluded that the initial tangent modulus and the strain at failure increased as the normal stress of the test was increased. Also, the higher lime contents, up to certain limits, increase the shear strength. Therefore, simultaneous use of lime and silica fume is recommended to improve the geotechnical properties of gypsiferous soils.

흙의 粒度分捕가 石灰混合土의 强度特性에 미치는 影響 (Effects of Grain Size Distribution in Soil on the Strength Characteristics of Lime-Soil Mixtures)

  • 조성정;강예묵
    • 한국농공학회지
    • /
    • 제27권2호
    • /
    • pp.57-71
    • /
    • 1985
  • The characteristics of compaction and unconfined compressive strength were investigated by mixing with lime to all soils adjusted by given percentages of two kinds of clays to sand to obtain the most effective distribution of grain size and the optimum lime content for soil stabilization. In addition, unconfined compressive strength and durability tested by adding of sodium metasilicate, sodium sulfate, sodium carbonate, sodium gydroxide and magnesium oxide to lime-soil mixture mixed with 8 percent lime to adjusted soil having the mixing percentage of 60 percent of cohesive black clay and 40 percent of sand by weight to get the effect and the optimum content of chemicals. The results obtained were as follows; 1.With the addition of more lime, the optimum moisture content was increased, and the maximum dry density was decreased, whereas the more the amount of clay and the less was the maximum drt density. 2. In the soil having more fine grain size the unconfined compressive strength was larger in the earlier stage of curing period, in accordance with the longer period, the mixing percentages of sand to clay showing the maximum unconfined compressive strength, on the basis of 28-day strength, were 60% : 40% (black clay) and 40% : 60% (brown clay) respectively. 3. The reason why the soil adjusted with black clay was remarkably bigger in the unconfined compressive strength than ones adjusted with brown clay for all specimen of lime-soil mixture was the difference in the kind of clay, the amount of chemical compositions the value of pH. Black clay was mainly composed of halloysite that reacted with lime satisfactorily, whereas the main composition of brown clay was kaolinite that was less effect in the enhance of unconfined compressive strength. Also the difference of unconfined compressive strength was because black clay was larger in the amount of composition of calcium oxide and magnesium oxide in the value of pH affecting directly on the unconfined compressive strength of lime-soil mixture than brown clay. 4. In the lime-soil mixture mixed with 8 percent of lime to soil that mixing percentage of sand to black clay was 60% : 40%, on the standard of 7-day strength, the effect of chemical was arranged in the order of magnesium oxide, sodium carbonate, sodium sulfate, sodium hydroxide and sodium metasilicate. 5. The optimum amount of chemical being applicable to the maximum unconfined compressive strength of lime-chemical-soil mixture was 1 percent by weight for air dry soil in the case of adding sodium carbonated and 0.75 percent on sodium hydroxide, the unconfined compressive strength was increased continuously with increase of the amount of chemical up to 2 percent of chemical content is the lime-chemical-soil mixture added sodium metasilicate, sodium sulfate and magnesium oxide. 6. It was considered that the chemical played and accelerant role of early revelation of strength because the rate of increase of unconfined compressive strength of all of lime-chemical-soil mixtures was largest on the 7-day cured specimen. 7. The effect of test on freezing and thawing after adding suitable amount of chemical on the lime-soil mixture mixed with 8 percent of lime to soil that mixing percentage of sand to black clay was 60% : 40% was arranged in the order of magnesium oxide, sodium carbonate, sodium sulfate, sodium metasilicate and sodium hydroxide.

  • PDF

다짐된 모래-벤토나이트 혼합토의 인장강도 측정 (Tensile Strength Measurement on Compacted Sand-Bentonite Mixtures)

  • 정수정;김태형;김찬기
    • 대한토목학회논문집
    • /
    • 제26권6C호
    • /
    • pp.377-384
    • /
    • 2006
  • 다짐된 모래-벤토나이트 혼합토의 인장강도 측정을 위한 새로운 시험방법을 개발하기 위하여 일축관입(UP)시험에 대한 이론적 실험적 측면에서의 연구를 실시하였다. 다짐된 혼합토의 인장강도는 완전소성이론을 이용한 한계해석으로부터 계산될 수 있으며 개량일축관입시험기(Improved Unconfined Penetration, IUP)는 기존의 일축관입시험기와 비교하여 시험기기의 개선을 통해 측정 오류를 감소시켰다. 선행 시험 결과 원반의 크기와 재하속도의 증가와 pH가 높아(산성)짐에 따라 인장강도가 증가함을 알 수 있었다. 또한 원반 직경이 25.4mm이며 재하속도가 0.5%/min~1%/min일 경우가 개량일축관입시험에 가장 적합하다는 것을 알 수 있었다. 할렬인장시험 결과와의 비교를 통해 개량일축관입시험법의 신뢰성도 확인하였다.

석고플라스터 혼합토의 공학적 특성 (A Study on the Engineering Characteristics of the plaster-soil uiiitures)

  • 도덕현;정성모
    • 한국농공학회지
    • /
    • 제27권4호
    • /
    • pp.53-60
    • /
    • 1985
  • The plaster mixed to loam and sandy soil from 4 to 12 percent by dry soil weight, and the compaction, permeability, CBR, unconfined compressive strength and freezingthawing test were performed The results obtained are summarized as follows; 1.The coefficient of permeability reduced sharply at the plaster content of 4 percent, and in the CBR test, the swelling ratio reduced by the increment of plaster content. 2.The addition of plaster increased the unconfined compressive strength by the cementing effect, and it was found that the optimum plaster content, existed with the soil type, which showed the maximum strength 3.It was possible to enhance the unconfined compressive strength of the gypsum-lime-soil mixtures when the optimum content of plaster was mixed to the hydrated lime. 4.In case of sandy soil, the relative frost heave decreased with the mixture of plaster, however in loam soil, the relative frost heave began to increase at the plaster content of 12 percent than non-treated soil. Therefore the optimum plaster content existed for protecting frost heave by the different soil type. 5.The above summarized results make it possible to expect the effects such as improvement of soil properties, decrement of permeability, increment of unconfined compressive strength, and protection of frost heave, etc, therefore, it is considered that it is possible to it is plaster as sub-base materials of road.

  • PDF

Bottom Ash의 전기적 특성과 일축압축강도 (The Electrical Properties and Unconfined Compression Strength of Bottom Ash)

  • 김태완;손영환;박재성;노수각;봉태호
    • 한국농공학회논문집
    • /
    • 제56권1호
    • /
    • pp.21-30
    • /
    • 2014
  • The objective of this study is to find the electrical properties of Bottom ash from thermoelectric power plants in Korea. By using Parallel Plate Method, the electrical resistivity and dielectric constant were measured at the frequency from 20 Hz to 10 MHz. Also, unconfined strength test, XRF and sieve analysis were performed for finding the relationship between strength, physiochemical properties and electrical properties. In the result, the change of electrical resistivity and dielectric constant of bottom ash against frequency was similar to that of general soil. The proportion of fine grain in bottom ash had the positive correlation with dielectric constant and negative correlation with electrical resistivity. Chloride and sulfur trioxide were proportional to dielectric constant and the more bottom ash had chloride content, the lower electrical resistivity appeared in bottom ash. Unconfined strength of bottom ashes had a range from 200 kPa to 780 kPa and strength was inverse proportional to electrical resistivity.

Mechanical properties of stabilized saline soil as road embankment filling material

  • Li Wei;Shouxi Chai;Pei Wang
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.499-510
    • /
    • 2024
  • In northern China, abundant summer rainfall and a higher water table can weaken the soil due to salt heave, collapsibility, and increased moisture absorption, thus the chlorine saline soil (silty clay) needs to be stabilized prior to use in road embankments. To optimize chlorine saline soil stabilizing programs, unconfined compressive strength tests were conducted on soil treated with five different stabilizers before and after soaking, followed by field compaction test and unconfined compressive strength test on a trial road embankment. In situ testing were performed with the stabilized soils in an expressway embankment, and the results demonstrated that the stabilized soil with lime and SH agent (an organic stabilizer composed of modified polyvinyl alcohol and water) is suitable for road embankments. The appropriate addition ratio of stabilized soil is 10% lime and 0.9% SH agent. SH agent wrapped soil particles, filled soil pores, and generated a silk-like web to improve the moisture stability, strength, and stress-strain performance of stabilized soil.

화강암질 풍화토의 시멘트에 의한 안정처리에 관한 연구 (내구성을 중심으로) (The Study on Portland Cement Stabilization on the Weathered Granite Soils (on the Durability))

  • 도덕현
    • 한국농공학회지
    • /
    • 제22권3호
    • /
    • pp.60-74
    • /
    • 1980
  • Soil-cement mixtures involve problems in it's durability in grain size distribution and mineral composition of the used soils as well as in cement content, compaction energy, molding water content, and curing. As an attempt to solve the problems associated with durability of weathered granite soil with cement treated was investigated by conducting tests such as unconfined compression test, it's moisture, immers, wet-dry and freeze-thaw curing, mesurement of loss of weight with wet-dry and freeze-thaw by KS F criteria and CBR test with moisture curing on the five soil samples different in weathering and mineral composition. The experimental results are summarized as follows; The unconfined compressive strength was higher in moisture curing rather than in the immers and wet-dry, while it was lowest in freeze-thaw. Decreasing ratio of unconfined compressive strength in soil-cement mixtures were lowest in optimum moisture content or in the dry side rather than optimum moisture content with freeze-thaw. The highly significant ceofficient was obtained between the cement content and loss of weight with freeze-thaw and wet-dry. It was possible to obtain the durability of soil-cement mixtures, as the materials of base for roads, containing above 4 % of cement content, above 3Okg/cm$_2$ of unconfined compressive trength with seven days moisture curing or 12 cycle of freeze-thaw after it, above 100% of relative unconfined compressive strength, 80% of index of resistance, below 14% of loss of weight with 12 cycle of wet-dry and above 1. 80g/cm$_2$ of dry density.

  • PDF

지오그리드 혼합 보강경량토의 압축강도특성 연구 (Characteristics of Compressive Strength of Geogrid Mixing Reinforced Lightweight Soil)

  • 김윤태;권용규;김홍주
    • 한국지반공학회논문집
    • /
    • 제22권7호
    • /
    • pp.37-44
    • /
    • 2006
  • 본 연구는 지오그리드 혼합 보강경량토의 응력-변형 거동과 강도 특성에 대해 조사하였다. 경량혼합토의 압축강도를 증진하기 위해 경량혼합토에 지오그리드를 혼합하였다. 시험 공시체는 다양한 종류의 배합조건 즉, 시멘트 함유율, 함수비, 기포 함유율에 따라서 각각 제작되어졌고, 여러번의 일축압축강도시험이 수행되었다. 시험결과로부터, 경량혼합토의 일축압축강도와 응력-변형 거동은 배합조건에 의해 큰 영향을 받는 것으로 나타났다. 시멘트 함유율이 증가됨에 따라 일축압축강도 또한 증가한다. 그러나 초기 함수비나 기포 함유율이 증가함에 따라 일축압축강도는 감소하였다. 거의 모든 경우에서 지오그리드에 의한 보강 효과 때문에 지오그리드 보강경량토의 강도가 증가되는 것이 관찰되었다. 지오그리드 혼합 보강경량토의 응력-변형률 관계는 취성거동이라기 보다는 연성적인 거동특성을 가졌다. 보강경량토에서 할선 탄성계수 ($E_{50}$)는 지오그리드 함유로 인해 강도가 증가함에 따라 증가되었다.

유기산계 지반개량재를 혼합한 점토의 강도 특성에 관한 실험적 연구 (An Experimental Study on Strength Characteristics of Clay Mixed with Organic Acid Ground Improvement Material)

  • 임소영;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제14권8호
    • /
    • pp.5-9
    • /
    • 2013
  • 본 연구에서는 저에너지, 친환경적인 방법의 지반개량을 목적으로 하는 유기산재의 지반개량재로서의 강도특성을 모색하였다. 이에 유기산재를 활용하여 재령 28일까지의 일축압축강도시험 및 삼축압축시험을 통한 흙의 강도 변화에 대해 분석하였다. 유기산 재료를 첨가한 점토의 강도는 재령이 길어질수록, 유기산재 혼합비가 커질수록 전반적으로 증가하는 경향을 나타내었다. 유기산계 지반개량재 혼합에 따른 점토의 강도 증진 효과를 파악하는데 있어서, 일축압축강도시험과 삼축압축시험 결과를 통해 유기산재가 지반개량재로 쓰였을 때 가져오는 강도 증대효과가 있다는 것을 알 수 있었다. 결과적으로, 실내시험을 통해 지반개량에 있어 유기산계 지반개량재의 활용가능성을 볼 수 있었다. 향후 세부적인 시험과 현장시험이 좀 더 명확한 강도증진을 규명하는데 도움이 될 것으로 판단된다.