DOI QR코드

DOI QR Code

Tensile Strength Measurement on Compacted Sand-Bentonite Mixtures

다짐된 모래-벤토나이트 혼합토의 인장강도 측정

  • 정수정 (한국해양대학교 대학원 토목환경공학과) ;
  • 김태형 (한국해양대학교 건설환경공학부) ;
  • 김찬기 (대진대학교 건설시스템공학과)
  • Received : 2006.05.03
  • Accepted : 2006.07.10
  • Published : 2006.11.29

Abstract

Theoretical and experimental study of the unconfined penetration (UP) test was conducted to suggest a new test method (referred to as IUP, Improved Unconfined Penetration) for determination of the tensile strength of compacted sand-bentonite mixtures. The tensile strength of compacted mixtures can be calculated from limit analysis based on the theory of perfect plasticity. The measurement errors in new test method were reduced by improving the UP device. Preliminary experiment results indicate that the tensile strength increases with increasing the disk size, loading rate and pH level. In addition, the disk diameter with 25.4 mm and the loading rate with 0.5%/min~1%/min are most suitable condition for the IUP test. The reliability of IPU test was verified by through the fact that good agreement between the IUP and conventional split tensile test results is observed.

다짐된 모래-벤토나이트 혼합토의 인장강도 측정을 위한 새로운 시험방법을 개발하기 위하여 일축관입(UP)시험에 대한 이론적 실험적 측면에서의 연구를 실시하였다. 다짐된 혼합토의 인장강도는 완전소성이론을 이용한 한계해석으로부터 계산될 수 있으며 개량일축관입시험기(Improved Unconfined Penetration, IUP)는 기존의 일축관입시험기와 비교하여 시험기기의 개선을 통해 측정 오류를 감소시켰다. 선행 시험 결과 원반의 크기와 재하속도의 증가와 pH가 높아(산성)짐에 따라 인장강도가 증가함을 알 수 있었다. 또한 원반 직경이 25.4mm이며 재하속도가 0.5%/min~1%/min일 경우가 개량일축관입시험에 가장 적합하다는 것을 알 수 있었다. 할렬인장시험 결과와의 비교를 통해 개량일축관입시험법의 신뢰성도 확인하였다.

Keywords

References

  1. Allen, A. (2001) Contaminant landfills: The myth of sustainability. Engineering Geology, Vol. 60, pp. 3-19 https://doi.org/10.1016/S0013-7952(00)00084-3
  2. Breen, J. J. and Stephens, J. E. (1966) Split cylinder test applied to bituminous mixtures at low temperatures. ASTM, Jour. of Materials, Vol. 1, No.1, March
  3. Chen, W. F. and Drucker, D. C. (1969) Bearing capacity of concrete blocks or rock. Jour. of Eng. Mech. Div.. Proc. ASCE, Vol. 95, No. EM4, pp. 955-978
  4. Chen, W. F. (1970a) Extensibility of concrete and theorems of limit analysis. Jour. of Eng. Mech. Div , Proc. ASCE, Vol. 96, No. EM3, pp. 341-352
  5. Chen, W. F. (1970b) Double punch test for tensile strength of concrete. ACI, Vol. 67, pp. 993-995
  6. Fang, H. Y. and Chen, W. F. (1972) New method for determination of tensile strength of soils. Highway Research Record 354, pp. 62-68
  7. Fang, H. Y. and Fernandez (1981) Determination of tensile strength of soils by unconfined-penetration test. ASTM STP 740, pp. 130-144
  8. Fang, H.-Y., Daniels, J. L. and Kim, T.-H. (2004) Pollution intrusion on soil-pavement system. ASCE Journal of Transportation Engineering, Vol. 130, No.4, pp. 526-534 https://doi.org/10.1061/(ASCE)0733-947X(2004)130:4(526)
  9. George, K. P. (1970) Theory of brittle fracture applied to soil cement. Jour. of Soil Mech. and Found. Div., Proc. ASCE, Vol. 96, No. SM3, pp. 991-1010
  10. Kennedy, T. W. and Hudson, W. R. (1968) Application of the indirect tensile test to stabilized materials. Highway Research Record 235, pp. 36-48
  11. Kim, T.-H. and Sture, S. (2004) Effect of moisture on attraction force in beach sand. Marine Georesources and Geotechnology, Vol. 22, No. 1-2, pp. 33-47 https://doi.org/10.1080/10641190490467071
  12. Leonards, G. A. and Narain, J. (1963) Flexibility of clay and cracking of earth dams. Jour. of Soil Mech. and Found. Div; Proc. ASCE, Vol. 89, No. SM2, pp. 47-98
  13. Naik, D. (1986) Effect of temperature and pore fluid on shear characteristics of clay. Proc. 1st international Symposium Environmental Geotechnology, 1, pp. 382-390
  14. Spencer, E. (1968) Effect of tension of stability of embankment. Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 94, No. SM5, pp. 1159-1173
  15. Suklje, L. (1969) Rheological Aspects of Soil Mechanics. Wiley-Interscience, pp. 456-473
  16. Thompson, M. R. (1965) The Split Tensile Strength of Lime-Stabilized Soils. Highway Research Record 92, pp. 11-23
  17. Timoshonko, S. (1934) Theory of Elasticity. McGrw-Hill, New York, pp. 104-108
  18. Tschebotarioff, G. P., Ward, E. and DePhilippe, A. A. (1953) The tensile strength of disturbed and recompacted soils. Proc, Third Internat. Canf on Soil Mech. And Found Eng., Vol. 3, pp. 207-210
  19. Winterkom, H. F. (1955) The Science of Soil Stabilization, HRB Bull, pp. 1-24