• Title/Summary/Keyword: Uncolored zirconia Ceramic

Search Result 8, Processing Time 0.024 seconds

Flexure Strength of Various Colored and Uncolored Zirconia Ceramics for All-Ceramic Restoration (전부도재수복물을 위한 유색 및 무색 지르코니아 세라믹의 굴곡강도)

  • Oh, Sang-Chun;Lee, Hae-Hyoung;Shin, Mee-Ran;Lee, Il-Kwon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.2
    • /
    • pp.119-130
    • /
    • 2007
  • Purpose: This investigation was designed to estimate the flexure strength, density, and microstructure of the colored and uncolored zirconia oxide ceramics for fixed partial denture. Material and Methods: LAVATM All Ceramic(3M-ESPE, USA), Cercon Smart Ceramic(Dentsply, USA), and Z-match Ceramic(DentAim, Korea) were used for this study. All specimen was fabricated by ASTM C1161. After preparing $25{\times}2{\times}1.5mm$ of rectangular column and sitting rectangular column on universal test machine (UTM), external supporting point distance is 20.0 mm, internal supporting point distance is 10.0 mm. Specimen was loaded with 0.2 mm/min of cross head speed until fracture and at the time of broken of specimen, measuring loading value with PC software. Results: The results were obtained as follows: 1. Flexure strength of uncolored zirconia was higher than that of colored zirconia. 2. In uncolored zirconia, flexure strength of LAVATM Ceramic was more higher than the other ceramics, and it showed statistical difference between LAVATM Ceramic and Cercon Smart Ceramic (P<0.05). 3. In colored zirconia, flexure strength of LAVATM Ceramic was more higher than the other ceramics too, but they did not show statistical difference (p>0.05). 4. In Weibull analysis, Characterastic strength was showed highest value to uncolored LAVATM Ceramic and lowest value to Z-match ceramic, and Weibull modulus(m) of uncolored zirconia was higher than that of colored zirconia. 5. In XRD analysis, all group except Z-match showed high peak of t-ZrO2 but they did not show m-ZrO2. Colored zirconia group showed lower peak of t-ZrO2 than that of uncolored zirconia group.

Influence of coloring liquids on the shear bond strength between zirconia and veneering ceramic (색소체용액 침투가 지르코니아 및 전장용 세라믹의 전단결합강도에 미치는 영향)

  • Jung, Jong-Hyun;Oh, Gye-Jeong
    • Journal of Technologic Dentistry
    • /
    • v.38 no.4
    • /
    • pp.291-298
    • /
    • 2016
  • Purpose: This study was to evaluate the effect of coloring liquids on the shear bond strength between zirconia and veneering ceramic. Methods: Zirconia(15 mm in diameter, 2.5 mm in thickness; n=40) used in the experiment were divided into 5 groups depending on the coloring liquid. Each specimen were polished using a polishing machine(LaboPol-2, Struers, UK). A cylinder of veneering porcelain(6 mm in diameter, 3 mm in thickness) was fabricated and fired on zirconia surfaces. The shear bond strength was measured using a universal testing machine(Model 4302, Instron, USA). All data were analyzed statistically using a one-way ANOVA and Tukey's multiple comparisons test. After the shear bond test, fracture surfaces were examined by SEM. Results: Colored zirconia showed a higher shear bonding strength than that of uncolored zirconia except for colored zirconia immersed in Zirkonzahn coloring liquid. In particular, colored zirconia immersed in Kuwotech coloring liquid showed the highest shear bond strength. After the shear bond test, mixed failure patterns were mainly observed in the failure between zirconia and veneering ceramic. Conclusion: Coloring liquid enhanced the shear bond strength zirconia and veneering ceramic than uncolored zirconia.

Effect of Application of ZirLiner® and Blasting Treatments on Shear Bond Strength of Zirconia-Veneered Porcelain Interface (지르코니아-전장도재 계면의 전단결합강도에 대한 ZirLiner® 적용과 분사처리의 영향에 관한 연구)

  • Shin, Young-Ho;Lee, Yu-Na;Lee, Hae-Hyoung;Dong, Jin-Keun;Oh, Sang-Chun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.1
    • /
    • pp.113-127
    • /
    • 2008
  • The purpose of this study was to evaluate effect of application of $ZirLiner^{(R)}$ and blasting treatments on shear bond strength of zirconia-veneered porcelain interface. 60 uncolored zirconia plates and 30 colored zirconia plates were fabricated and divided into nine groups of 10 according to blasting treatment such as as-ground, glass blasting and alumina blasting and zirliner application. Veneering porcelains were built up over the center of the treated zirconia ceramic surface using jig and fired according to the manufacturers' instructions. Each specimen was completely embedded in acrylic resin. The specimens were placed in a mounting jig and subjected to shear force by a universal testing machine. Load was applied at a crosshead speed of 0.5㎜/min until failure. Average shear strengths were analyzed with two-way analysis of variance and one-way analysis of variance and the Duncan's post-hoc test. The fracture surfaces of the failed specimens were examined by SEM. The obtained results were as follows: 1. Depending on surface treatment by blasting, the degree of roughness is revealed in the order of Glass-blasted, As-ground, and Alumnia-blasted. The roughness average of uncolored and colored zirconia ceramic were not significantly different from blasting treatments. 2. In uncolored zirconia ceramic, the shear bond strength were not significantly different from blasting treatments. However, the shear bond strength were significantly different from Zirliner application. 3. Used ZirLiner, mean shear bond strength of colored zirconia was lower than uncolored zirconia. Especially, mean shear bond strength of colored zirconia was quite low with alumina-blasting treatment. 4. SEM analysis showed that veneered porcelain failed in zirconia ceramic interface and there was no cohesive failure.

The flexural strength Changes by the Low Temperature Degradation of Uncolored zirconia Ceramic for All Ceramic Restoration (전부도재 수복을 위한 무색지르코니아 세라믹의 저온열화에 따른 굴곡강도 변화)

  • Kim, Jung-Sook
    • Journal of Technologic Dentistry
    • /
    • v.31 no.2
    • /
    • pp.39-44
    • /
    • 2009
  • In the orthopedic field which firstly used zirconia as artificial joints, researchers had studied the reasons for collapsing zirconia used as restorative material by accumulated inner cracks in several years and they found out Low Temperature Degradation is one of the reasons. In the dentistry field, it has not been too long since they used zirconia as the cores of all-ceramic restoration; however, the study is needed as prophylactic measure against Low Temperature Degradation which can be caused by saliva wetting the mouth all the time and frictional forces such as bite pressure and masticatory pressure. Artificial aging by autoclaving is used because there are difficulties of testing in the patient's mouth. To study the changes in the material properties, the flexural strength of dental zirconia ceramic is measured before and after the test. The following are the result of the test. 1) The zirconia blocks in the autoclaves at $130^{\circ}C$ and $200^{\circ}C$ are phase-shifted tetragonal to monoclinic by Low Temperature Degradation. 2)The non-autoclaved specimens have the average fractural strength of 1346.4MPa, the specimens autoclaved at $130^{\circ}C$ have 1226.4Mpa and the specimens autoclaved at $200^{\circ}C$ have 1024.1MPa. The tests show that as the temperature increases, the flexural strength tend to decrease and the differences are noticeable(p<0.001). 3)Through the Duncan's post-hoc test, the differences in flexural strength of the 3 groups were listed in order of strength like normal temperature>at $130^{\circ}C$ autoclave low temperature degradation> at $200^{\circ}C$ autoclave low temperature degradation.

  • PDF

The color comparison of zirconia fabricated by using various coloring liquids (수종의 색소체용액으로 제작된 유색 지르코니아의 색조비교)

  • Oh, Gye-Jeong;Jung, Jong-Hyun
    • Journal of Technologic Dentistry
    • /
    • v.36 no.4
    • /
    • pp.247-253
    • /
    • 2014
  • Purpose: The aim of this study was to evaluate the effect of colored zirconia with different coloring liquids. Methods: Total 30 specimens were prepared. Specimens were classified into 6 groups: IPS e.max Ceram(P), Uncolored zirconia(C), VITA In-Ceram$^{(R)}$2000 YZ LL1(L), Zirkonzahn coloring liquid(Z), Wieland coloring liquid(W), and Kuwotech coloring liquid(K). Four different types of zirconia coloring liquid, VITA In-Ceram$^{(R)}$ 2000 YZ LL1(VITA Zahnfabrik, Germany), Zirkonzahn coloring liquid(Zirkonzahn, Italy), Wieland coloring liquid(Wieland, Germany), Kuwotech coloring liquid(Kuwotech, Korea) were used to fabricate colored zirconia by using infiltrating method and then completely sintered. The color of the all specimens was measured using the spectrophotometer(CM-2600d, Konica Minolta, Japan) and expressed in terms of the 3-coordinated values(CIE $L^*a^*b^*$). Color differences were calculated using the equation $${\Delta}E^*=[({\Delta}L^*)^2+({\Delta}a^*)^2+({\Delta}b^*)^2]^{1/2}$$. Results: $L^*a^*b^*$ values of the colored zirconia were affected by the coloring liquids. The uncolored zirconia(C) group showed the highest $L^*$ value and zirkonzahn coloring liquid(Z) group showed the lowest $L^*$ value. Zirkonzahn coloring liquid(Z) showed the highest $a^*$ value and VITA In-Ceram 2000 YZ LL1(L) group showed the highest $b^*$ value. Generally, the color difference(${\Delta}E^*$) in all groups showed higher than 3.7 except between IPS e.max Ceram(P) and wieland coloring liquid(W) group. Conclusion: Within the limitations of this study, various coloring liquids influenced the $L^*$, $a^*$, and $b^*$ values of colored zirconia. IPS e.max Ceram(P) and wieland coloring liquid(W) group did not show clinically perceiving color difference.

Flexural strength and reliability of highly translucent colored zirconia (고반투명 유색 지르코니아의 굽힘강도와 신뢰도에 대한 연구)

  • Kong, Hyun-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.1
    • /
    • pp.41-47
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the flexural strength and reliability of highly translucent colored zirconia for all ceramic restoration. Materials and Methods: Bar-shaped specimens (25 × 4 × 2.5 mm) were prepared from highly translucent monolithic zirconia. Three experimental groups were set up according to color (shade A0, A1, and A3). For each group, 20 specimens were prepared. Flexural strength was determined using a 3-point flexural test and results were analyzed with one-way ANOVA test. Weibull statistical analysis provided 2 parameter estimates: Weibull modulus and characteristic strength. X-ray diffraction (XRD) analysis was performed. Results: There was statistically significant difference between uncolored (Shade A0) and colored (shade A1 and A3) (P < 0.05), but there was no difference between colored groups (P > 0.05). The uncolored group had higher reliability compared with colored study groups. On x-ray diffraction analysis of each group, typical peaks of tetragonal phase appeared in all groups. Conclusion: Within the limitations of this in vitro study, coloring highly translucent zirconia had significant effect on flexural strength and reliability. Therefore, clinicians should be careful when using highly translucent colored zirconia to prevent breakage of veneering ceramic and enhance aesthetics.

Translucency and Color Stability of Various Core Ceramics for All-Ceramic Restoration (전부도재수복물을 위한 수종의 코어 세라믹의 반투명도 및 색 안정성)

  • Oh, Sang-Chun;Lee, Hae-Hyoung;Shin, Mee-Ran;Park, Kwang-Su
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.2
    • /
    • pp.157-170
    • /
    • 2007
  • Purpose: This investigation was designed to determine the translucency and color stability of various core ceramics for all-ceramic restoration using the CIE $L^*a^*b^*$ system. Material and Methods: IPS e.max Press ceramic(Ivoclar-Vivadent, Liechtenstein), $LAVA^{TM}$ All Ceramic(3M-Espe, Germany), Cercon Smart Ceramic(Dentsply, Germany), and Z-match Ceramic(DentAim, Korea) were used for this study. For the specimens of zirconia oxide ceramics, the as-sintered cylindrical blanks($11.0{\times}25.0mm$) were machined into the shape of a disk(0.4, 0.8, 1.5 mm in thickness, 10 mm in diameters) with a diamond grind machine. The IPS e.max Press specimens ($0.8{\times}10mm$) were fabricated using the "lost wax" technique. CIE $L^*a^*b^*$ coordinates and light transmission were recorded for each specimen with a spectrophotometer(CM-2600d, Minolta, Japan). Color differences were calculated using the equation, ${\Delta}E^*ab=[({\Delta}L^*)2+({\Delta}a^*)2+({\Delta}b^*)2]1/2$. Results: The results were obtained as follows: 1. The most translucent group was IPS e.max Press ceramic that is a glass-ceramic, and $Lava^{TM}$ and Z-match ceramic were more translucent than Cercon Smart ceramic in zirconia ceramic group. 2. In the all groups, there was no significant translucent change after 6 times heat-treatments required to make a final restoration. 3. Colored zirconia was showed more yellowish and dark than uncolored zirconia. 4. After heat-pressing, IPS e.max Press ceramic was showed high ${\Delta}E^*ab$ value(4.1 of eM1, 6.8 of eM2) that means to be more whiter than before heat-pressing. However, there was no color change after additive heat treatments for final restoration. 5. In the colored zirconia groups, there was no significant color change after some heat-treatments required to make a final restoration.

Fracture load and marginal fitness of zirconia ceramic coping by design and coloration (유색 및 백색 지르코니아 세라믹 코핑의 코핑 디자인에 따른 파절 하중과 변연 적합성)

  • Shin, Mee-Ran;Kim, Min-Jeong;Oh, Sang-Chun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.406-415
    • /
    • 2009
  • Purpose: The purpose of this study was to compare the marginal fitness and fracture load of the zirconia copings according to the design with different thickness and coloration. Material and methods: The evaluation was based on 80 zirconia copings. Zirconia copings were fabricated in design with different thicknesses using CAD/CAM system (Everset, KAVO dental GmbH, Biberach, Germany). The designs of copings were divided into four groups. The first group consisted of copings with uniform thickness of 0.3 mm. The thickness in the second group was 0.3 mm on the buccal surface and 0.6 mm on the lingual surface. The third group consisted of coping with uniform thickness of 0.6 mm. The thickness in the fourth group was 0.6 mm on the buccal surface and 1mm on the lingual surface. Each group consisted of 10 colored and 10 uncolored copings. Half of the copings (40) processed with a milling system according to the specific design were sent to be given a color (A3) through saturation in special dye by a manufacturing company. Just after sintering, the marginal discrepancies of copings were measured on the buccal, lingual, mesial and distal surfaces of metal die, under a Video Microscope System (sv-35, Sometech, Seoul, Korea) at a magnification of $\times$ 100. It was remeasured after the adjusting of the inner surface. Next, all copings were luted to the metal dies using reinforced cement {GC FujiCEM (GC Corp. Tokyo, Japan)} and mounted on the testing jig in a Universal Testing Machine (Instron 4467, Norwood, MA, USA). The results were analyzed statistically using the one-way ANOVA test. Results: The obtained results were as follow: 1. The measured value of marginal discrepancy right after sintering was the greatest in the contraction of the buccal area in all groups, except for group I2. 2. There was no significant difference of marginal fitness among the groups in the colored zirconia group (P<.05). 3. When the marginal fitness among the groups in the uncolored zirconia group was considered, group II2 had the smallest marginal discrepancy. 4. When the colored and uncolored groups with the same design were compared, there was a significant difference between I1 and II1 groups. In group 2, 3, and 4, the uncolored zirconia had the greatest marginal fitness (P<.05). 5. After adjustment of inner surface, there was no significant difference in the marginal fitness in all groups when color and design of the zirconia coping were compared. 6. The fracture load of CAD/CAM zirconia copings showed significant difference in group 1, 2, 3, and 4. I4 and II4 had the strongest fracture load. 7. When groups with different color and same design were compared, all colored groups showed greater fracture load (P>.05), with no significance. Conclusion: There was difference in the marginal fitness according to the design and coloration of zirconia copings right after sintering, but it was decided that the copings may well be used clinically if the inner surface are adjusted. The copings should be thick enough for the reinforcement of fracture strength. But considering the esthetics of the visible surfaces (labial and buccal surface), the thickness of copings may be a little thin, without giving any significant effect on the fracture strength. This type of design may be considered when giving priority to preservation of tooth or esthetics.