• Title/Summary/Keyword: Uncoated steel

Search Result 67, Processing Time 0.021 seconds

Oxide Layer Analysis of Uncoated Boron Steel Sheet for Hot Stamping According to the Atmosphere Oxygen Content (비도금 핫스탬핑용 보론강판의 분위기 산소량에 따른 산화층 분석)

  • J. H. Lee;T. H. Choi;J. H. Song;G. H. Bae
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.160-165
    • /
    • 2023
  • As the supply of eco-friendly vehicles increases, the application rate of hot stamping components is rising to reduce vehicle weight and improve safety. Although Al-Si coated steel sheets are commonly used in hot stamping processes, their manufacturing costs are elevated due to process patents and royalties. Various hot stamping studies have been conducted to reduce these production costs. In this study, we derived a process control method for suppressing the oxide layer of hot stamping parts using uncoated boron steel sheets. Firstly, hat-shaped parts were hot stamped under atmospheric conditions to analyze the tendency of oxide layer formation by location. Then, the Gleeble system was used to observe oxide layer formation based on oxygen content under various atmospheric conditions. Finally, the oxide layer thickness was quantitatively measured using SEM images.

Damage mechanism of particle impact in a ${Al_2}}O_3}-TiO_2$plasma coated soda-lime glass (${Al_2}}O_3}-TiO_2$ 플라즈마 코팅된 유리의 입자충격에 의한 손상기구)

  • Suh, Chang-Min;Lee, Moon-Hwan;Hong, Dea-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.529-539
    • /
    • 1998
  • A quantitative study of impact damage of ${Al_2}}O_3}-TiO_2$ plasma coated soda-lime glasses was carried out and compared with that of the uncoated smooth glass specimen. The shape of cracks by the impact of steel ball was observed by stereo-microscope and the decrease of the bending strength due to the impact of steel ball was measured through the 4-point bending test. At the low velocity, cone cracks were occurred. As the impact velocity increases, initial lateral cracks were propagated on the slanting surface of a cone crack, and radial cracks were generated at the crushed site. When the impact velocity of steel ball exceeds the critical velocity, the contact site of specimen was crushed due to plastic deformation and then radial and lateral cracks were largely grown. Crack length of coated specimens was smaller than that of uncoated smooth specimen due to the effect of coating layer on the substrate surface. According to impact velocity, the bending strength of coated specimens had no significant difference, compared with that of the uncoated smooth specimen. But this represents that the bending strength of coated specimens was increased, considering the effect of sand blasting damage which was performed to increase the adhesion force of coating layer.

High Temperature Salt Corrosion Property of Ferritic Stainless Steels (페라이트계 스테인리스강의 고온염 부식특성에 관한 연구)

  • Song, Jeon-Young;Park, Joong-Cheol;Ahn, Yong-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.860-866
    • /
    • 2009
  • It is very important to choose optimal material having good corrosion resistance and capabilities for the part materials such as the automotive exhaust system under a hot salt corrosion atmosphere. Generally, two types of corrosion come into the automotive exhaust system. One is 'Condensate Corrosion', which is occurred by exhaust gas condensate formed at the inner surface of exhaust system heated up during driving, which results in the acid condensate pitting. The other is 'High Temperature Salt Corrosion' occurring from the interaction between the chloride ion coming from salt at the seaside district or snow salt and the outer surface of exhaust system. By the corrosion attack, the main muffler is firstly damaged and the life cycle of an automobile is significantly decreased. It has been investigated that the hot salt corrosion properties of a STS 409L and 436L ferritic stainless steels which are well-known for the materials of the automotive exhaust system. In addition, the corrosion properties of hot dip aluminum coated STS 409L have been compared with uncoated steels. Aluminum coated STS 409L showed a superior corrosion resistance than uncoated STS 409L, and futhermore showed a better corrosion resistance than a STS 436L, which is an expensive ferritic stainless steel having a excellent corrosion resistance caused from more chromium content of an alloying element.

Flexural performance of RC beams incorporating Zinc-rich and epoxy bonding coating layers exposed to fire

  • Tobbala, Dina E.;Rashed, Ahmed S.;Tayeh, Bassam A.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.163-172
    • /
    • 2022
  • Zinc-rich epoxy (ZRE) is used to overcome corrosion problems in reinforced concrete (RC) beams and coat steel rebars to protect them from humidity and chlorides. An extra coating layer of Sikadur-31 epoxy (SDE) is utilised to increase bond strength because the use of ZRE reduces the bond strength between concrete and steel rebars. However, the low melting point of SDE indicates that concrete specimens are vulnerable to fire. An experimental investigation on flexural performance of RC beams incorporating ZRE-SDE coating of steel rebars that were destroyed by fire is performed in this study. Twenty beams of five concrete mixes with different cementitious contents were tested to compare fire exposure for coated and uncoated rebars of the same beams at room temperature and determine the optimal cementitious content. Scanning electron microscopy (SEM) was also applied to investigate characteristics of fired mixture samples. Results showed that the use of SDE-ZRE at room temperature improves flexural strengths of the five mixes compared with uncoated rebars with percentages ranging from 8.5% to 12.3%. All beams with SDE-ZRE lost approximately 50% of their flexural strength due to firing. Moreover, the mix incorporating SF (silica fume) of 15% and cement content of 400 kg/m3 introduces optimum behaviour compared with other mixes. All results were supported and verified by the SEM analysis and compressive strength of cubic specimens of the same mixes.

The Characteristics of Butt Welding Nd:YAG Laser with a Continuous Wave of Nickel Coated S45C Steel (니켈도금된 S45C강의 연속파 Nd:YAG 레이저 맞대기 용접 특성)

  • Mo, Yang-Woo;Shin, Ho-Jun;Shin, Byung-Heon;Yoo, Young-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.1-12
    • /
    • 2007
  • S45C steel has been widely used in industrial applications, such as crank shafts, gears, main spindles of machine tools, connecting rods, etc., because of its distinguished mechanical property. In the convention arc welding of S45C plates without heat treatments, it is possible for welding defects to take place, such as a void or a hot-crack, due to a high carbon composition of S45C. Laser welding process is widely used in the industrial field due to its numerous advantages: a small heat affected zone(HAZ), deep penetration, high welding speed, single-pass thick section capability, and small distortion after welding. The objective of this research works is to investigate the influence of the process parameters, such as power of laser and welding speed, on the characteristics of laser welding for the case of nickel coated and nickel uncoated S45C steel. As the result of the experiment, in case of butt welding, nickel coated S45C steel has a uniform formation of welding zone and it was judged that the welding nature was better as inner defects and the quantity of spatter were formed relatively fewer than nickel uncoated S45C steel.

A Study on Quenching Speed Prediction Method of Specimen for Evaluating the Oxide Layer of Uncoated Boron Steel Sheet (비도금 보론강판 산화층 평가용 시편의 퀜칭속도 예측기법 연구)

  • Lee, J.H.;Song, J.H.;Bae, G.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.17-22
    • /
    • 2022
  • Hot stamping is widely used to manufacture structural parts to satisfy requirements of eco-friendly vehicles. Recently, hot forming technology using uncoated steel sheet is being studied to reduce cost and solve patent problems. In particular, research is focused on process technology capable of suppressing the generation of an oxide layer. To evaluate the oxide layer in the hot stamping process, Gleeble testing machine can be used to evaluate the oxide layer by controlling the temperature history and the atmosphere condition. At this time, since cooling by gas injection is impossible to protect the oxide layer on the surface of a specimen, research on a method for securing a quenching speed through natural cooling is required. This paper proposes a specimen shape design method to secure a target quenching speed through natural cooling when evaluating the oxide layer of an un-coated boron steel sheet by Gleeble test. For the evaluation of the oxide layer of the un-coated steel sheet through the Gleeble test, dog-bone and rectangular type specimens were used. In consideration of the hot stamping process, the temperature control conditions for the Gleeble test were set and the quenching speed according to the specimen shape design was measured. Finally, the quenching speed sensitivity according to shape parameter was analyzed through regression analysis. A quenching speed prediction equation was then constructed according to the shape of the specimen. The constructed quenching speed prediction equation can be used as a specimen design guideline to secure a target quenching speed when evaluating the oxide layer of an un-coated boron steel sheet by the Gleeble test.

Friction transition diagram considering the effects of oxide layer formed on contact parts of TiN coated steel ball

  • Cho, C.W.;Lim, J.S.;Lee, Y.Z.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.179-180
    • /
    • 2002
  • In this study. the friction transition diagram based on the effect of oxide layer formation on contact surface between TiN coated steel ball and uncoated steel disk was constructed. From the diagram. it can be seen that as the contact load increases. the contact number of cycle at the beginning of oxide layer formation decreases linearly and as the coating thickness increases and the surface roughness of steel disk increases under same contact load. that increases. For the coated ball specimen, a AISI 52100 steel ball was used and AISI 1045 steel was used for the disk counter part.

  • PDF

Effect of Acid Fog on Rust Formation and Fatigue Strength of Weathering Steel (산성안개가 내후성강재의 녹형성 및 피로강도에 미치는 영향)

  • Kim, Min-Gun;Ku, Eun-hoi
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.13-20
    • /
    • 2002
  • The purpose of this study is to investigate the effect of acid fog on the rust formation behavior of weathering steel (SMA50) which is used in uncoated bridges. Weathering steel didn't form the passive film under the environment of acid fog(pH5,6), whereas the environment of distilled water formed the protective oxide film. Therefore, the construction of weathering steel under the environment extremely exposed to SOx and NOx which are the main compositions of acid fog is not adequate. Fatigue limits of weathering steel under acid fog environment are remarkably decreased as compared with environment of distilled water. The corrosive constituents in acid fog has piled up the corrosion products on specimen surface and generated the corrosion pits. Because of the high stress concentration arising at this corrosion pit, relatively low fatigue limits were obtained for acid fog specimens.

  • PDF

Evaluation of Stress Distribution and Corrosion Fatigue Strength on Spot Welded Lap Joint of Coated Thin Steel Plate (표면처리 박강판 spot용접 이음재의 응력분포와 부식피로강도 평가)

  • 배동호;임동진
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.36-45
    • /
    • 1996
  • Fatigue strength of the spot welded lap joint is considerably influenced by corrosive environments. Particularly, the chloride and the sulfide are most injurious to strength of the spot welded lap joint. Therefore, there is a need to evaluate its effect to corrosion fatigue strength for safe life design of spot welded structures. In order to evaluate their corrosion fatigue strength, corrosion fatigue tests on the spot welded lap joints of the uncoated and the coated high strength steel sheets were conducted in air and in 10% NaCl solution. Corrosion fatigue strength of the uncoated specimens were entirely lower than the coated one in NaCl solution, but those of the coated specimens in NaCl solution were lower than in air. And stress distribution in single spon welded lap joint subjected to tension-shear load was investigated by the finite element method. Using these results, we tried to evaluate corrosion fatgue strength of the various spot welded lap joints with maximum stress $\sigma_{max}$ at edge on loading side of the spot welded lap joint. We could find that corrosion fatigue strength could be quantitatively and systematically rearranged by $\sigma_{max}$.

  • PDF

Failure and Phase Transformation Mechanism of Multi-Layered Nitride Coating for Liquid Metal Injection Casting Mold

  • Jeon, Changwoo;Lee, Juho;Park, Eun Soo
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.331-338
    • /
    • 2021
  • Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three ㎛-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 ℃ molten metallic glass.