• Title/Summary/Keyword: Uncertainty principle

Search Result 100, Processing Time 0.028 seconds

A Study on the Uncertainty of MVRS (포구속도측정레이더의 불확도에 관한 연구)

  • Park, Yong-Suk;Choi, Ju-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.94-100
    • /
    • 2007
  • MVRS's measuring principles are based on the Doppler principle. It measures the velocities near the muzzle using the doppler signal output from the antenna and then predicts the velocity of the bullet leaving the muzzle by performing the regression analysis on previous measured velocities. There are a number of error sources when calculating the muzzle velocity. Antenna has long term frequency stability error and the doppler signal from the antenna has noise. These two error sources influence the accuracy of estimated velocities from the doppler signal. Estimated velocity errors result in the random error of data statistics. And when performing a regression analysis these random error components are transferred to the fitting error component. This study also analyzed the error components according to the hardware limitations of MVRS-700 and the signal processing method, and presented the calculated uncertainty of muzzle velocity.

Corrections and Artifacts Regarding Filter-based Measurements of Black Carbon (필터 기반 블랙카본 측정에서의 보정과 불확실성에 대한 고찰)

  • Lee, Jeonghoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.610-615
    • /
    • 2018
  • A filter-based optical technique is one of the representative ways for the measurement and quantification of black carbon (BC). Since the filter-based technique adopts a simple principle, it is easy to put into practical use and instrumental products have already been commercialized. In this study, however, the absorption coefficients of BC after the correction process was estimated to be approximately 3 times lower than those before the correction process. In addition, the difference between before and after corrections was also evident for the trend of increasing and decreasing absorption coefficient. When BC concentration is low, uncertainty may increase regardless of corrections due to the artifacts of filter. In this sense, techniques without using a filter are required, and uncertainties will be minimized if these techniques are used to further complement the filter-based black carbon measurements. Finally, this study is believed to help understand the uncertainty and correction of filter-based black carbon measurements.

PSA: A Photon Search Algorithm

  • Liu, Yongli;Li, Renjie
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.478-493
    • /
    • 2020
  • We designed a new meta-heuristic algorithm named Photon Search Algorithm (PSA) in this paper, which is motivated by photon properties in the field of physics. The physical knowledge involved in this paper includes three main concepts: Principle of Constancy of Light Velocity, Uncertainty Principle and Pauli Exclusion Principle. Based on these physical knowledges, we developed mathematical formulations and models of the proposed algorithm. Moreover, in order to confirm the convergence capability of the algorithm proposed, we compared it with 7 unimodal benchmark functions and 23 multimodal benchmark functions. Experimental results indicate that PSA has better global convergence and higher searching efficiency. Although the performance of the algorithm in solving the optimal solution of certain functions is slightly inferior to that of the existing heuristic algorithm, it is better than the existing algorithm in solving most functions. On balance, PSA has relatively better convergence performance than the existing metaheuristic algorithms.

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

Upgrade of gamma electron vertex imaging system for high-performance range verification in pencil beam scanning proton therapy

  • Kim, Sung Hun;Jeong, Jong Hwi;Ku, Youngmo;Jung, Jaerin;Cho, Sungkoo;Jo, Kwanghyun;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1016-1023
    • /
    • 2022
  • In proton therapy, a highly conformal proton dose can be delivered to the tumor by means of the steep distal dose penumbra at the end of the beam range. The proton beam range, however, is highly sensitive to range uncertainty, which makes accurately locating the proton range in the patient difficult. In-vivo range verification is a method to manage range uncertainty, one of the promising techniques being prompt gamma imaging (PGI). In earlier studies, we proposed gamma electron vertex imaging (GEVI), and constructed a proof-of-principle system. The system successfully demonstrated the GEVI imaging principle for therapeutic proton pencil beams without scanning, but showed some limitations under clinical conditions, particularly for pencil beam scanning proton therapy. In the present study, we upgraded the GEVI system in several aspects and tested the performance improvements such as for range-shift verification in the context of line scanning proton treatment. Specifically, the system showed better performance in obtaining accurate prompt gamma (PG) distributions in the clinical environment. Furthermore, high shift-detection sensitivity and accuracy were shown under various range-shift conditions using line scanning proton beams.

Uncertainty Analysis on Wind Speed Profile Measurements of LIDAR by Applying SODAR Measurements as a Virtual True Value (가상적 참값으로써 소다 측정자료를 적용한 라이다에 의한 풍속연직분포 측정의 불확도 분석)

  • Kim, Hyun-Goo;Choi, Ji-Hwi
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.79-85
    • /
    • 2010
  • The uncertainty in WindCube LIDAR measurements, which are specific to wind profiling at less than 200m above ground levelin wind resource assessments, was analyzed focusing on the error caused by its volume sampling principle. A two-month SODAR measurement campaign conducted in an urban environment was adopted as the reference wind profile assuming that various atmospheric boundary layer shapes had been captured. The measurement error of LIDAR at a height z was defined as the difference in the wind speeds between the SODAR reference data, which was assumed to be a virtually true value, and the numerically averaged wind speed for a sampling volume height interval of $z{\pm}12.5m$. The pattern of uncertainty in the measurement was found to have a maximum in the lower part of the atmospheric boundary layer and decreased with increasing height. It was also found that the relative standard deviations of the wind speed error ratios were 6.98, 2.70 and 1.12% at the heights of 50, 100 and 150m above ground level, respectively.

A New Metric for Joint Effective Width Computation (새로운 결합유효폭 측정법)

  • Lee, Jeok-Sik
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.565-572
    • /
    • 2001
  • Analyzing functions with small values of the product of position and frequency uncertainties have many advantages in image processing and data compression. Until now, this values has been computed based on the uncertainty principle, but the computed frequency uncertainty is not practical the human visual filters which have on-zero peak response frequencies. A new metric for the frequency uncertainty is used to calculate a deviation about the frequency which has maximum response. The joint effective widths for various functions are derived. As the result of analysis, the joint uncertainty for many functions converges to 0.5 as the joint parameter increases. Furthermore. Gabor cosine function shows an excellent performance among the mentioned functions.

  • PDF

New Development of Methods for Environmental Impact Assessment Facing Uncertainty and Cumulative Environmental Impacts (불확실성과 누적환경영향하에서의 환경영향평가를 위한 방법론의 새로운 개발)

  • Pietsch, Jurgen
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.3
    • /
    • pp.87-94
    • /
    • 1995
  • At both international and national levels, such as in the Rio Declaration and the EU's Fifth Environmental Action Plan, governments have committed themselves to the adoption of the precautionary principle (UNCED 1992, CEC 1992). These commitments mean that the existence of uncertainty in appraising policies and proposals for development should be acknowledged. Uncertainty arise in both the prediction of impacts and in the evaluation of their significance, particularly of those cumulative impacts which are individually insignificant but cumulatively damaging. The EC network of EIA experts, stated at their last meeting in Athens that indirect effects and the treatment of uncertainty are one of the main deficiencies of current EIA practice. Uncertainties in decision-making arise where choices have been made in the development of the policy or proposal, such as the selection of options, the justification for that choice, and the selection of different indicators to comply with different regulatory regimes. It is also likely that a weighting system for evaluating significance will have been used which may be implicit rather than explicit. Those involved in decision-making may employ different tolerances of uncertainty than members of the public, for instance over the consideration of the worst-case scenario. Possible methods for dealing with these uncertainties include scenarios, sensitivity analysis, showing points of view, decision analysis, postponing decisions and graphical methods. An understanding of the development of cumulative environmental impacts affords not only ecologic but also socio-economic investigations. Since cumulative impacts originate mainly in centres of urban or industrial development, in particular an analysis of future growth effects that might possibly be induced by certain development impacts. Not least it is seen as an matter of sustainability to connect this issue with ecological research. The serious attempt to reduce the area of uncertainty in environmental planning is a challenge and an important step towards reliable planning and sustainable development.

  • PDF

Applying the Polder Levee of the Stream Specific by Using Hydordynamic Model (수치해석을 이용한 윤중제 흐름특성해석 적용성)

  • Choi, Han-Kuy;Kim, Jang-Uk;Baek, Hyo-Sun
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.193-198
    • /
    • 2008
  • When the existing polder levee was constructed, the river's numerical analysis decided the bank raise by applying the planned flood stage or by using the result from the sectional 1st dimensional numerical analysis. But, it was presented that there is a limitation in the 1st dimensional value analysis when the structure like the polder levee obstructs the special shaped running water flow. Therefore, in order to verify the numerical value applicability when the polder levee is constructed, this report compared each other through the 1st and 2nd dimensional numerical analysis and the mathematical principle model laboratory. In case of the polder levee construction through the numerical analysis and the mathematical principle model laboratory, it was decided that there was no big problem in the 1st dimensional numerical analysis applied design, considering the uncertainty of mathematical principle analysis though the first dimensional numerical analysis was calculated a little bigger than the second. But, after construction, it was found that the water level deviation of the 1st, 2nd occurred biggest at the place where the flow was divided into two. Also, as a result of comparing the 1st, 2nd dimensional numerical analysis with the mathematical principle model laboratory, it was confirmed that the 1st numerical analysis applied design decreased the modal safety largely, as the left side water level was calculated smaller more than 0.5m in case of the 1st dimensional numerical analysis.

  • PDF

CONFIGYRATION OF A ROBUST MODEL FOLLOWING SYSTEM WITH AN ADAPTIVE IDENTFIER

  • Saito, Tomoaki;Kimura, Mitsuyoshi;Kikuta, Akira;Kamiya, Yuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.548-552
    • /
    • 1994
  • The robust compensation controller, which has been proposed by one of the authors and is based on the fundamental principle of making the plant follow the reference model, consists of the reference model and the robust compensator. The reference model is constructed by using the nominal model of the plant and determines the input-output properties of the resultant system. The robust compensator is obtained as a solution of the mixed sensitivity problem in H infinity control theory. Therefore the resultant system is of low sensitivity and robust stability. In the case where uncertainty does not occur in the plant, the plant follows perfectly the reference model. Therefore, in the case where uncertainty occurs in the plant, we propose the system configuration which improves the following accuracy without replacing the 개bust compensator but by identifying, the plant and reconstructing the reference model.

  • PDF