• Title/Summary/Keyword: Uncertainty evaluation

Search Result 894, Processing Time 0.023 seconds

Challenges in Application of Remote Sensing Techniques for Estimating Forest Carbon Stock (원격탐사 기술의 산림탄소 축적량 추정적용에 있어서의 도전)

  • Park, Joowon
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.2
    • /
    • pp.113-123
    • /
    • 2013
  • The carbon-offset mechanism based on forest management has been recognized as a meaningful tool to sequestrate carbons already existing in the atmosphere. Thus, with an emphasis on the forest-originated carbon-offset mechanism, the accurate measurement of the carbon stock in forests has become important, as carbon credits should be issued proportionally with forest carbon stocks. Various remote sensing techniques have already been developed for measuring forest carbon stocks. Yet, despite the efficiency of remote sensing techniques, the final accuracy of their carbon stock estimations is disputable. Therefore, minimizing the uncertainty embedded in the application of remote sensing techniques is important to prevent questions over the carbon stock evaluation for issuing carbon credits. Accordingly, this study reviews the overall procedures of carbon stock evaluation-related remote sensing techniques and identifies the problematic technical issues when measuring the carbon stock. The procedures are sub-divided into four stages: the characteristics of the remote sensing sensor, data preparation, data analysis, and evaluation. Depending on the choice of technique, there are many disputable issues in each stage, resulting in quite different results for the final carbon stock evaluation. Thus, the establishment of detailed standards for each stageis urgently needed. From a policy-making perspective, the top priority should be given to establishinga standard sampling technique and enhancing the statistical analysis tools.

  • PDF

Configuration Design, Hot-firing Test and Performance Evaluation of 200 N-Class GCH4/LOx Small Rocket Engine (Part II: Steady State-mode Ground Hot-firing Test) (200 N급 GCH4/LOx 소형로켓엔진의 형상설계와 성능시험평가 (Part II: 정상상태 지상연소시험))

  • Kim, Min Cheol;Kim, Young Jin;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2020
  • A performance evaluation of the 200 N-class GCH4/LOx small rocket engine was performed through ground hot-firing test. As a result, the combustion pressure and thrust raised with the increase of the oxidizer supply pressure, and thus the specific impulse, characteristic velocity, and their efficiency increased. The characteristic velocity was measured at about 90% performance efficiency. The change of chamber aspect ratio did not affect the performance of the rocket engine in the test condition specified. In addition, uncertainty evaluation was conducted to ensure the reliability of the test results.

Application of Economic Risk Measures for a Comparative Evaluation of Less and More Mature Nuclear Reactor Technologies

  • Andrianov, A.A.;Andrianova, O.N.;Kuptsov, I.S.;Svetlichny, L.I.;Utianskaya, T.V.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.431-439
    • /
    • 2018
  • Less mature nuclear reactor technologies are characterized by a greater uncertainty due to insufficient detailed design information, operational data, cost information, etc., but the expected performance characteristics of less mature options are usually more attractive in comparison with more mature ones. The greater uncertainty is, the higher economic risks associated with the project realization will be. Within a comparative evaluation of less and more mature nuclear reactor technologies, it is necessary to apply economic risk measures to balance judgments regarding the economic performance of less and more mature options. Assessments of any risk metrics involve calculating different characteristics of probability distributions of associated economic performance indicators and applying the Monte-Carlo method. This paper considers the applicability of statistical risk measures for different economic performance indicators within a trial case study on a comparative evaluation of less and more mature unspecified LWRs. The presented case study demonstrates the main trends associated with the incorporation of economic risk metrics into a comparative evaluation of less and more mature nuclear reactor technologies.

Evaluation of the Uncertainties in Rainfall-Runoff Model Using Meta-Gaussian Approach (Meta-Gaussian 방법을 이용한 강우-유출 모형에서의 불확실성 산정)

  • Kim, Byung-Sik;Kim, Bo-Kyung;Kwon, Hyun-Han
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.49-64
    • /
    • 2009
  • Rainfall-runoff models are used for efficient management, distribution, planning, and design of water resources in accordance with the process of hydrologic cycle. The models simplify the transition of rainfall to runoff as rainfall through different processes including evaporation, transpiration, interception, and infiltration. As the models simplify complex physical processes, gaps between the models and actual rainfall events exist. For more accurate simulation, appropriate models that suit analysis goals are selected and reliable long-term hydrological data are collected. However, uncertainty is inherent in models. It is therefore necessary to evaluate reliability of simulation results from models. A number of studies have evaluated uncertainty ingrained in rainfall-runoff models. In this paper, Meta-Gaussian method proposed by Montanari and Brath(2004) was used to assess uncertainty of simulation outputs from rainfall-runoff models. The model, which estimates upper and lower bounds of the confidence interval from probabilistic distribution of a model's error, can quantify global uncertainty of hydrological models. In this paper, Meta-Gaussian method was applied to analyze uncertainty of simulated runoff outputs from $Vflo^{TM}$, a physically-based distribution model and HEC-HMS model, a conceptual lumped model.

  • PDF

Evaluation of Uncertainty Importance Measure for Monotonic Function (단조함수에 대한 불확실성 중요도 측도의 평가)

  • Cho, Jae-Gyeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.5
    • /
    • pp.179-185
    • /
    • 2010
  • In a sensitivity analysis, an uncertainty importance measure is often used to assess how much uncertainty of an output is attributable to the uncertainty of an input, and thus, to identify those inputs whose uncertainties need to be reduced to effectively reduce the uncertainty of output. A function is called monotonic if the output is either increasing or decreasing with respect to any of the inputs. In this paper, for a monotonic function, we propose a method for evaluating the measure which assesses the expected percentage reduction in the variance of output due to ascertaining the value of input. The proposed method can be applied to the case that the output is expressed as linear and nonlinear monotonic functions of inputs, and that the input follows symmetric and asymmetric distributions. In addition, the proposed method provides a stable uncertainty importance of each input by discretizing the distribution of input to the discrete distribution. However, the proposed method is computationally demanding since it is based on Monte Carlo simulation.

Evaluation of Uncertainty Importance Measure by Experimental Method in Fault Tree Analysis (결점나무 분석에서 실험적 방법을 이용한 불확실성 중요도 측도의 평가)

  • Cho, Jae-Gyeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.187-195
    • /
    • 2009
  • In a fault tree analysis, an uncertainty importance measure is often used to assess how much uncertainty of the top event probability (Q) is attributable to the uncertainty of a basic event probability ($q_i$), and thus, to identify those basic events whose uncertainties need to be reduced to effectively reduce the uncertainty of Q. For evaluating the measures suggested by many authors which assess a percentage change in the variance V of Q with respect to unit percentage change in the variance $\upsilon_i$ of $q_i$, V and ${\partial}V/{\partial}{\upsilon}_i$ need to be estimated analytically or by Monte Carlo simulation. However, it is very complicated to analytically compute V and ${\partial}V/{\partial}{\upsilon}_i$ for large-sized fault trees, and difficult to estimate them in a robust manner by Monte Carlo simulation. In this paper, we propose a method for experimentally evaluating the measure using a Taguchi orthogonal array. The proposed method is very computationally efficient compared to the method based on Monte Carlo simulation, and provides a stable uncertainty importance of each basic event.

Project Portfolio Evaluation Problem-Based on the Initial Construction and Periodic Revision Under Uncertainty (프로젝트 포트폴리오 평가문제 - 불확실성 하의 최초 구성 및 주기적 개정을 중심으로)

  • Nam, Jae-Deog;Ahn, Tae-Ho;Yun, Jeong-Sun
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.3
    • /
    • pp.107-116
    • /
    • 2008
  • This paper deals with modelling and introducing of the project portfolio construction and evaluation problem under uncertainty. The common way in industry of managing project portfolio is construction of initial portfolio considering uncertainties which exist inside and outside of portfolio, and periodic revision of portfolio due to the deviation from plans. In this paper, we introduce algorithm which reflecting the industrial common practice of initial planning and periodic revision. With this simulation method, probabilistic distribution of portfolio's performance in consideration can be found.

Reliability Assessment by the Scoring Model for the Advanced Pressurized water Reactor 1400MWe Project Selection under Uncertainty (신형경수로 1400을 위해 점수산정 모형에 의한 신뢰성 평가)

  • 강영식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.6
    • /
    • pp.23-35
    • /
    • 2002
  • The problem of system reliability is very important issue in the digitalized nuclear power plant, because the failure of its system brings about extravagant economic loss, environment destruction, and fatal damage of human. Therefore the purpose of this study has developed the reliability evaluation model through the scoring model by the quantitative and qualitative factors in order to justify the evaluation considering the advanced safety factors in the Advanced Pressurized water Reactor 1400MWe(APR 1400MWe) under uncertainty. Especially, the qualitative factors considering the human, information control, and quality factors for the systematic and rational justification have been closely analyzed. The proposed model can be simply applied in real fields in order to minimize the industrial accidents in the digitalized nuclear power plant.

ANALYSIS OF THE PROCESS OF FABRICATION OF STEEL STRUCTURES USING AN AUTOMATIC CONSTRUCTION SYSTEM

  • Hak-Ju Lee;Yoonseok Shin;Wi Sung Yoo;Hunhee Cho;Kyung-In Kang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1081-1087
    • /
    • 2009
  • An automatic construction system in Korea is now at the stage of the full automation like in Japan, and an actual pilot project is going to be built in 2009. However, in developing a new construction system that has never been implemented before, there is a need to assess the performance and to consider the uncertainty of the system. The program evaluation and review technique (PERT) allows dealing with this uncertainty. Thus, this paper implements an analysis of the process of steel fabrication and makes suggestions for time-related problems arising from the analysis. The time required for steel erection by the automatic system was compared with that in the traditional method. In the result, finding out another construction process and improving robot performance were proposed to resolve the problems. The results will contribute to promoting the development of an efficient system for the new automatic construction system.

  • PDF

Uncertainty, Social Support & Powerlessness in Mothers of Handicapped Children (장애아 어머니의 불확실성, 사회적 지지 및 무력감)

  • Park Eun Sook;Oh Won Oak
    • Child Health Nursing Research
    • /
    • v.5 no.2
    • /
    • pp.151-166
    • /
    • 1999
  • The purposes of this study were to measure the degree of perceived uncertainty, social support & powerlessness, to examine the relationship between the perceived uncertainty, social support & powerlessness and then to find the predictors of powerlessness in mother's of handicapped children. The subjects of this study consist of 102 mothers of handicapped children, registered at rehabilitation & handicapped children school. Data was collected from September 1998 to March 1999. The tools used in this study were Mishel's the Parents' Perception of Uncertainty Scale (28 item, 4 likert scale), Miller's Powerlessness measurement Scale(28 itewt 4 likert scale) & Cohen's Interpersonal Support Evaluation List (40 items, 4 likert scale). Data was analyzed by t-test, ANOVA, Duncan comparison, Pearson Correlation coefficient & Stepwise multiple regression Results of this study are summarized as follows : 1. Mothers perceived their uncertainty to be slightly high(Mn 2.50). The degree of perceived uncertainty by the four components were followed as : lack of clarity(2.69), unpredictability(2.56), ambiguity(2.56) & lack of information(2.46). The degree of perceived uncertainty of the mothers of handicapped children revealed to be influenced significantly by age of children, admission experience, disability types of children. 2. The degree of mothers' powerlessness was measured to be slightly high(Mn 2.14). The degree of perceived powerlessness of the mothers with handicapped children revealed to be influenced significantly by age of children, duration of illness admission experience,8E marital status of the mothers. 3. Mothers perceived their social support to be slightly high(Mn 2.71). The degree of perceived social support revealed to be influenced significantly by sex of children, married state of mothers. 4. Mothers' uncertainty was related positively to the mothers' powerlessness(r=.33, p=.0008). And also mothers' powerlessness was related inversely to social support(r=-.50, p=.0001). But, mothers' uncertainty was not related to social support significantly. 5. To analyze the variables which affect powerlessness, stepwise regression was implemented. As a result, about 61% of the powerlessness were explained by social support, marital status of the mothers and perceived uncertainty. Based upon these results, it is recommended that the nurses, who are caring handicapped children and their families, provide various support programs for them to overcome their difficulties. Also programs which decrease the uncertainty & powerlessness used social support multidimensionally & individually are recommended to be developed.

  • PDF