• Title/Summary/Keyword: Uncertainty Quantification

Search Result 164, Processing Time 0.026 seconds

Study on the Methodology of the Microbial Risk Assessment in Food (식품중 미생물 위해성평가 방법론 연구)

  • 이효민;최시내;윤은경;한지연;김창민;김길생
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.4
    • /
    • pp.319-326
    • /
    • 1999
  • Recently, it is continuously rising to concern about the health risk being induced by microorganisms in food such as Escherichia coli O157:H7 and Listeria monocytogenes. Various organizations and regulatory agencies including U.S.FPA, U.S.DA and FAO/WHO are preparing the methodology building to apply microbial quantitative risk assessment to risk-based food safety program. Microbial risks are primarily the result of single exposure and its health impacts are immediate and serious. Therefore, the methodology of risk assessment differs from that of chemical risk assessment. Microbial quantitative risk assessment consists of tow steps; hazard identification, exposure assessment, dose-response assessment and risk characterization. Hazard identification is accomplished by observing and defining the types of adverse health effects in humans associated with exposure to foodborne agents. Epidemiological evidence which links the various disease with the particular exposure route is an important component of this identification. Exposure assessment includes the quantification of microbial exposure regarding the dynamics of microbial growth in food processing, transport, packaging and specific time-temperature conditions at various points from animal production to consumption. Dose-response assessment is the process characterizing dose-response correlation between microbial exposure and disease incidence. Unlike chemical carcinogens, the dose-response assessment for microbial pathogens has not focused on animal models for extrapolation to humans. Risk characterization links the exposure assessment and dose-response assessment and involve uncertainty analysis. The methodology of microbial dose-response assessment is classified as nonthreshold and thresh-old approach. The nonthreshold model have assumption that one organism is capable of producing an infection if it arrives at an appropriate site and organism have independence. Recently, the Exponential, Beta-poission, Gompertz, and Gamma-weibull models are using as nonthreshold model. The Log-normal and Log-logistic models are using as threshold model. The threshold has the assumption that a toxicant is produce by interaction of organisms. In this study, it was reviewed detailed process including risk value using model parameter and microbial exposure dose. Also this study suggested model application methodology in field of exposure assessment using assumed food microbial data(NaCl, water activity, temperature, pH, etc.) and the commercially used Food MicroModel. We recognized that human volunteer data to the healthy man are preferred rather than epidemiological data fur obtaining exact dose-response data. But, the foreign agencies are studying the characterization of correlation between human and animal. For the comparison of differences to the population sensitivity: it must be executed domestic study such as the establishment of dose-response data to the Korean volunteer by each microbial and microbial exposure assessment in food.

  • PDF

The Analysis and Migration of Bisphenol A Related Compounds from Metal Food Cans (식품용 금속 캔으로부터 비스페놀 A 관련 물질들의 분석 및 이행 연구)

  • Park, Se-Jong;Park, So-Ra;Choi, Jae Chun;Kim, MeeKyung
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.4
    • /
    • pp.329-335
    • /
    • 2017
  • Analysis method was presented for the simultaneous determination of nine bisphenol A related compounds such as bisphenol A (BPA), phenol, p-tert-butylphenol, bisphenol A diglycidyl ether (BADGE), $BADGE{\cdot}2H_2O$, $BADGE{\cdot}2HCl$, bisphenol F diglycidyl ether (BFDGE), $BFDGE{\cdot}2H_2O$ and $BFDGE{\cdot}2HCl$ migrated from inner coatings of metal food cans by high performance liquid chromatography (HPLC) with fluorescence detection. The method was validated by examining the linearity of calibration curve, the limit of detection (LOD), the limit of quantification (LOQ), recovery and uncertainty. The migration tests of nine BPA related compounds were carried out with four food simulants; deionized water (DW), 4% acetic acid, 50% ethanol and n-heptane. There was not any compound detected in DW, 4% acetic acid and 50% ethanol at $60^{\circ}C$ for 30 min and n-heptane at $25^{\circ}C$ for 60 min. BPA and phenol were migrated into 4% acetic acid and 50% ethanol at $95^{\circ}C$ for 30 min. The concentrations were ranged from 0 to $10.77{\mu}g/L$ of BPA and from 0 to $2.35{\mu}g/L$ of phenol. Canned foodstuffs mostly have long-term shelf life. We investigated migration of nine BPA related compounds according to the variation in storage periods (0~90 days) and temperatures (4, 25 and $60^{\circ}C$). All compounds were not founded during 90 days at $4^{\circ}C$ and $25^{\circ}C$, respectively. However BPA and $BADGE{\cdot}2H_2O$ were founded in DW and 4% acetic acid at $60^{\circ}C$. The migration levels of BPA and $BADGE{\cdot}2H_2O$ were close to the value of LOQ, respectively and did not change significantly as storage period. It was founded from results that the migration of BPA related compounds from metal food cans was controlled to a safe level.

Monitoring of Heavy Metals Migrated from Glassware, Ceramics, Enamelware, and Earthenware (유리제, 도자기제, 법랑 및 옹기류 재질의 식품용 기구 및 용기·포장의 중금속 이행량 모니터링)

  • Cho, Kyung Chul;Jo, Ye-Eun;Park, So-Yeon;Park, Yongchjun;Park, Se-Jong;Lee, Hye Young
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.1
    • /
    • pp.23-30
    • /
    • 2020
  • This study investigated the migration levels of lead (Pb), cadmium (Cd), and arsenic (As) from food contact articles (glassware, ceramics, enamelware, and earthenware) into a food stimulant (4% v/v, acetic acid). Migration tests were performed at 25℃ for 24 h and all analyses were performed using Inductively-Coupled Plasma Mass Spectrometry (ICP-MS). The method was validated by linearity of calibration curves, limit of detection (LOD), limit of quantification (LOQ), recovery, precision, and uncertainty. In glassware, the migration concentrations ranged from not-detected (N.D.) to 752.21 ㎍/L and N.D. to 1.99 ㎍/L for Pb and Cd, respectively. In ceramics, the migration concentrations ranged from N.D. to 1,955.86 ㎍/L, N.D. to 74.06 ㎍/L, and N.D. to 302.40 ㎍/L for Pb, Cd, and As, respectively. In enamelware, the migration concentrations ranged from N.D. to 4.48 ㎍/L, N.D. to 7.00 ㎍/L, and N.D. to 52.00 ㎍/L for Pb, Cd, and Sb, respectively. In earthenware, the migration concentrations ranged from N.D. to 13.68 ㎍/L, N.D. to 0.04 ㎍/L, and N.D. to 6.71 ㎍/L for Pb, Cd, and As, respectively. All results were below the migration limits of Korea standards and specifications for food utensils, containers, and packages.

Effects of Motion Correction for Dynamic $[^{11}C]Raclopride$ Brain PET Data on the Evaluation of Endogenous Dopamine Release in Striatum (동적 $[^{11}C]Raclopride$ 뇌 PET의 움직임 보정이 선조체 내인성 도파민 유리 정량화에 미치는 영향)

  • Lee, Jae-Sung;Kim, Yu-Kyeong;Cho, Sang-Soo;Choe, Yearn-Seong;Kang, Eun-Joo;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Kim, Sang-Eun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.413-420
    • /
    • 2005
  • Purpose: Neuroreceptor PET studies require 60-120 minutes to complete and head motion of the subject during the PET scan increases the uncertainty in measured activity. In this study, we investigated the effects of the data-driven head mutton correction on the evaluation of endogenous dopamine release (DAR) in the striatum during the motor task which might have caused significant head motion artifact. Materials and Methods: $[^{11}C]raclopride$ PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (pre-task: 30-50 min, task: 70-90 min, post-task: 110-120 min) were realigned to the first frame in pre-task condition. Intra-condition registrations between the frames were performed, and average image for each condition was created and registered to the pre-task image (inter-condition registration). Pre-task PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the others. Volumes of interest (VOI) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DAR was calculated as the percent change of BP during and after the task. SPM analyses on the BP parametric images were also performed to explore the regional difference in the effects of head motion on BP and DAR estimation. Results: Changes in position and orientation of the striatum during the PET scans were observed before the head motion correction. BP values at pre-task condition were not changed significantly after the intra-condition registration. However, the BP values during and after the task and DAR were significantly changed after the correction. SPM analysis also showed that the extent and significance of the BP differences were significantly changed by the head motion correction and such changes were prominent in periphery of the striatum. Conclusion: The results suggest that misalignment of MRI-based VOI and the striatum in PET images and incorrect DAR estimation due to the head motion during the PET activation study were significant, but could be remedied by the data-driven head motion correction.