• Title/Summary/Keyword: Uncertainty Processing

Search Result 245, Processing Time 0.03 seconds

PROJECTION OF TRAJECTORY FOR SUPPORTING UNCERTAINTY FUTURE TIME OF MOVING OBJECT

  • Won Ho-Gyeong;Jung Young Jin;Lee Yang Koo;Park Mi;Kim Hak-cheol;Ryu Keun Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.72-75
    • /
    • 2005
  • Uncertainty of objects in Moving Object Database is a coherent property. It has been discussed in a lot of researches on modelling and query processing. The previous studies assume that uncertain future time is determined through utilizing recent speed and direction of vehicles. This method is simple and useful for estimating the time of the near future location. However, it is not appropriate when we estimate the time of the far future location. Therefore, in this paper, we propose a concept of planned route. It is used to estimate uncertain future time, which has to be located at a given point. If the route of an object is planned beforehand its locations are uncertainly distributed near that route. By a simple projection operation, the probability that a location lies in the planned route is increased. Moreover, we identify the future time of an object based on the speed for passing the route, which is offered via a website.

  • PDF

Measurement Uncertainty on Subsurface Defects Detection Using Active Infrared Thermographic Technique (능동 적외선열화상 기법을 이용한 이면결함 검출에서의 측정 불확도)

  • Chung, Yoonjae;Kim, Wontae;Choi, Wonjae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.341-348
    • /
    • 2015
  • Active infrared thermography methods have been known to possess good fault detection capabilities for the detection of defects in materials compared to the conventional passive thermal infrared imaging techniques. However, the reliability of the technique has been under scrutiny. This paper proposes the lock-in thermography technique for the detection and estimation of artificial subsurface defect size and depth with uncertainty measurement.

Development of On-Line Diagnostic Expert System Algorithmic Sensor Validation (진단 전문가시스템의 개발 : 연산적 센서검증)

  • 김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.323-338
    • /
    • 1994
  • This paper outlines a framework for performing intelligent sensor validation for a diagnostic expert system while reasoning under uncertainty. The emphasis is on the algorithmic preprocess technique. A companion paper focusses on heuristic post-processing. Sensor validation plays a vital role in the ability of the overall system to correctly detemine the state of a plant monitored by imperfect sensors. Especially, several theoretical developments were made in understanding uncertain sensory data in statistical aspect. Uncertain information in sensory values is represented through probability assignments on three discrete states, "high", "normal", and "low", and additional sensor confidence measures in Algorithmic Sv.Upper and lower warning limits are generated from the historical learning sets, which represents the borderlines for heat rate degradation generated in the Algorithmic SV initiates a historic data base for better reference in future use. All the information generated in the Algorithmic SV initiate a session to differentiate the sensor fault from the process fault and to make an inference on the system performance. This framework for a diagnostic expert system with sensor validation and reasonig under uncertainty applies in HEATXPRT$^{TM}$, a data-driven on-line expert system for diagnosing heat rate degradation problems in fossil power plants.

Supplier Evaluation in Green Supply Chain: An Adaptive Weight D-S Theory Model Based on Fuzzy-Rough-Sets-AHP Method

  • Li, Lianhui;Xu, Guanying;Wang, Hongguang
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.655-669
    • /
    • 2019
  • Supplier evaluation is of great significance in green supply chain management. Influenced by factors such as economic globalization, sustainable development, a holistic index framework is difficult to establish in green supply chain. Furthermore, the initial index values of candidate suppliers are often characterized by uncertainty and incompleteness and the index weight is variable. To solve these problems, an index framework is established after comprehensive consideration of the major factors. Then an adaptive weight D-S theory model is put forward, and a fuzzy-rough-sets-AHP method is proposed to solve the adaptive weight in the index framework. The case study and the comparison with TOPSIS show that the adaptive weight D-S theory model in this paper is feasible and effective.

Effect of Nonlinear Transformations on Entropy of Hidden Nodes

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.10 no.1
    • /
    • pp.18-22
    • /
    • 2014
  • Hidden nodes have a key role in the information processing of feed-forward neural networks in which inputs are processed through a series of weighted sums and nonlinear activation functions. In order to understand the role of hidden nodes, we must analyze the effect of the nonlinear activation functions on the weighted sums to hidden nodes. In this paper, we focus on the effect of nonlinear functions in a viewpoint of information theory. Under the assumption that the nonlinear activation function can be approximated piece-wise linearly, we prove that the entropy of weighted sums to hidden nodes decreases after piece-wise linear functions. Therefore, we argue that the nonlinear activation function decreases the uncertainty among hidden nodes. Furthermore, the more the hidden nodes are saturated, the more the entropy of hidden nodes decreases. Based on this result, we can say that, after successful training of feed-forward neural networks, hidden nodes tend not to be in linear regions but to be in saturated regions of activation function with the effect of uncertainty reduction.

Technical and Financial evaluation for mineral project (광물자원 프로젝트의 기술성 및 경제성 평가 기법)

  • Cho, Seong-Jun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.101-118
    • /
    • 2009
  • In order to invest in overseas mineral projects, it is necessary to have a ability of technical and financial evaluation. Reserve estimation is the most important for mineral appraisal. Geostatistical evaluation of tonnage and grade promises more accurate reserve estimation than traditional methods such as polygon, inverse distance method and so on even if it has some uncertainty. Selection of a mining method and a mineral processing is also important because capex and opcosts of a mineral project is due to the selection. Mineral project is usually evaluated financially using NPV and IRR which are calculated through DCF(Discount Cash Flow). Uncertainty of a mineral project is analyzed statistically using sensitivity analysis and montecarlo simulation.

  • PDF

Some Comments on and an Extension to Activity Structures for Intelligent Systems

  • Hall, Lawrence O.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 1993
  • Activity structures are a set of functional structures which may be used to provide a uniform framework for the description of information processing systems. The interaction of some aspects of activity structures is discussed. Intelligent systems, a subset of information handling systems, are the primary emphasis of this work. An extension to the functional structures of the activity structures is proposed. The proposed structure is a met a-structure which affects most elements of an intelligent system. The structure is concerned with describing the way uncertainty in an environment is handled by a system. An example is given which shows the importance of describing the uncertainty handling method(s) of an intelligent system.

  • PDF

Robust Multi-Objective Job Shop Scheduling Under Uncertainty

  • Al-Ashhab, Mohamed S.;Alzahrani, Jaber S.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.45-54
    • /
    • 2022
  • In this study, a multi-objective robust job-shop scheduling (JSS) model was developed. The model considered multi-jobs and multi-machines. The model also considered uncertain processing times for all tasks. Each job was assigned a specific due date and a tardiness penalty to be paid if the job was not delivered on time. If any job was completed early, holding expenses would be assigned. In addition, the model added idling penalties to accommodate the idling of machines while waiting for jobs. The problem assigned was to determine the optimal start times for each task that would minimize the expected penalties. A numerical problem was solved to minimize both the makespan and the total penalties, and a comparison was made between the results. Analysis of the results produced a prescription for optimizing penalties that is important to be accounted for in conjunction with uncertainties in the job-shop scheduling problem (JSSP).

Comparison study of CPU processing load by I/O processing method through use case analysis (유즈케이스를 통해 분석해 본 I/O 처리방식에 따르는 CPU처리 부하 비교연구)

  • Kim, JaeYoung
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.57-64
    • /
    • 2019
  • Recently, avionics systems are being developed as integrated modular architecture applying the modular integration design of the functional unit to reduce maintenance costs and increase operating performance. Additionally, a partitioning operating system based on virtualization technology was used to process various mission control functions. In virtualization technology, the CPU processing load distribution is a key consideration. Especially, the uncertainty of the I/O processing time is a risk factor in the design of reliable avionics systems. In this paper, we examine the influence of the I/O processing method by comparing and analyzing the CPU processing load by the I/O processing method through use of case analysis and applying it to the example of spatial-temporal partitioning.

Data Fusion Algorithm based on Inference for Anomaly Detection in the Next-Generation Intrusion Detection (차세대 침입탐지에서 이상탐지를 위한 추론 기반 데이터 융합 알고리즘)

  • Kim, Dong-Wook;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.233-238
    • /
    • 2016
  • In this paper, we propose the algorithms of processing the uncertainty data using data fusion for the next generation intrusion detection. In the next generation intrusion detection, a lot of data are collected by many of network sensors to discover knowledge from generating information in cyber space. It is necessary the data fusion process to extract knowledge from collected sensors data. In this paper, we have proposed method to represent the uncertainty data, by classifying where is a confidence interval in interval of uncertainty data through feature analysis of different data using inference method with Dempster-Shafer Evidence Theory. In this paper, we have implemented a detection experiment that is classified by the confidence interval using IRIS plant Data Set for anomaly detection of uncertainty data. As a result, we found that it is possible to classify data by confidence interval.