• Title/Summary/Keyword: Uncertainty Factor

Search Result 624, Processing Time 0.039 seconds

Uncertainty Assessment for CAPSS Emission Inventory by DARS (DARS에 의한 CAPSS 배출자료의 불확도 평가)

  • Kim, Jeong;Jang, Young-Kee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.1
    • /
    • pp.26-36
    • /
    • 2014
  • The uncertainty assessment is important to improve the reliability of emission inventory data. The DARS (Data Attribute Rating System) have recommended as the uncertainty assessment technic of emission inventory by U.S. EPA (Environmental Protection Agency) EIIP (Emission Inventory Improvement Program). The DARS score is based on the perceived quality of the emission factor and activity data. Scores are assigned to four attributes; measurement/method, source specificity, spatial congruity and temporal congruity. The resulting emission factor and activity rate scores are combined to arrive at an overall confidence rating for the inventory. So DARS is believed to be a useful tool and may provide more information about inventories than the usual qualitative grading procedures (e.g. A through E). In this study, the uncertainty assessment for 2009 CAPSS (Clean Air Policy Support System) emission inventory is conducted by DARS. According to the result of this uncertainty assessment, the uncertainty for fugitive dust emission data is higher than other sources, the uncertainty of emission factor for surface coating is the highest value, and the uncertainty of activity data for motor cycle is the highest value. Also it is analysed that the improvement of uncertainty for activity data is as much important as the improvement for emission factor to upgrade the reliability of CAPSS emission inventory.

Factor Analysis of Uncertainty Experienced by Patients having Rheumatoid Arthritis (류마티스 관절염 환자가 지각하는 불확실성 개념의 요인분석)

  • Yoo, Kyoung-Hee;Lee, Eun-Ok
    • Journal of muscle and joint health
    • /
    • v.4 no.2
    • /
    • pp.238-248
    • /
    • 1997
  • This study was conducted to identify the characteristics of uncertainty in patients having rheumatoid arthritis. Subjects of the study constituted 528 patients who visited outpatient clinics of two university hospitals and one general hospital in Seoul. A self report questionnaire was used to measure the uncertainty. Reliability coefficients of this instrument was found Cronbach's ${\alpha}=.84$. In data analysis, SPSS PC 6.0 computer program was utilized for descriptive statistics and factor analysis. Three factors were appointed on the basis of literature review for the principal component factor analysis method and Varimax Orthogonal Rotation. The results of factor analysis were as follows ; 1) Three factors for uncertainty were identified through the principal component analysis and varimax rotation, and these contributed 37.4% of the valiance in the total score. Twenty six items among the whole items in the scale loaded above .39 on one of 3 factors. 2) The naming of each factor was as follows : Factor 1 was 'ambiguity' and has 12 items, factor 2 was 'lack of information' and has 8 items, factor 3 was 'unpredictability' and has 7 items. 3) Cronbach's alpha for internal consistency was .84 for the total items and .81, .80, .50 for each of three subscales in that order.

  • PDF

Effects of ILFs on DRAM algorithm in SURR model uncertainty evaluation caused by interpolated rainfall using different methods

  • Nguyen, Thi Duyen;Nguyen, Duc Hai;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.137-137
    • /
    • 2022
  • Evaluating interpolated rainfall uncertainty of hydrological models caused by different interpolation methods for basins where can not fully collect rainfall data are necessary. In this study, the adaptive MCMC method under effects of ILFs was used to analyze the interpolated rainfall uncertainty of the SURR model for Gunnam basin, Korea. Three events were used to calibrate and one event was used to validate the posterior distributions of unknown parameters. In this work, the performance of four ILFs on uncertainty of interpolated rainfall was assessed. The indicators of p_factor (percentage of observed streamflow included in the uncertainty interval) and r_factor (the average width of the uncertainty interval) were used to evaluate the uncertainty of the simulated streamflow. The results showed that the uncertainty bounds illustrated the slight differences from various ILFs. The study confirmed the importance of the likelihood function selection in the application the adaptive Bayesian MCMC method to the uncertainty assessment of the SURR model caused by interpolated rainfall.

  • PDF

Expected Annual Damage Estimation with Uncertainty (불확실성을 고려한 연피해 기대치 산정)

  • Kim, Hung Soo;Kim, Yoo Jin;Lee, Ji-Won
    • Journal of Wetlands Research
    • /
    • v.5 no.1
    • /
    • pp.41-52
    • /
    • 2003
  • The flood damage reduction studies have been performed by the channel improvement plan and the levee has mainly constructed with the freeboard concept. However, the freeboard concept might be an inappropriate choice as a safety factor of the levee because many uncertainties are involved in the procedure of the channel improvement plan studies. So, we considered the uncertainties In the discharge-probability, stage-discharge, and stage-damage functions and estimate the expected annual damage. The Monte Carlo technique for uncertainty analysis is used. As our results, the expected annual damage with uncertainty shows the larger value than without uncertainty. Since the expected annual damage with uncertainty already considers the safety factor it is the proper result. However, the expected annual damage without uncertainty does not consider the safety factor yet. Thus, if the expected annual damage without uncertainty considers the freeboard concept, it could be compared with the expected annual damage with uncertainty for the evaluation of the overestimation or underestimation of the levee construction.

  • PDF

Uncertainty of Measurement in Nitrate Analysis from Burley Leaf Tobacco (버어리종 담배 중 질산성 질소에 대한 측정불확도)

  • Lee Jeong-Min;Lee Kyoung-Ku;Han Sang-Bin
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.2
    • /
    • pp.226-234
    • /
    • 2005
  • The uncertainty of measurement in nitrate from burley leaf tobacco by continuous-flow analysis method was evaluated following internationally accepted guidelines. The sources of uncertainty associated with the analysis of nitrate were weight of standard and sample, purity of standard, dilution of standard solution, calibration curve, water content, etc. The calculation of uncertainty based on the GUM(Guide to the Expression of Uncertainty in Measurement) and EURACHEM/CITAC Guide. An expanded uncertainty was obtained by multiplying the combined standard uncertainty with a coverage factor (k) calculated from the effective degree of freedom. The concentration of nitrate from burley leaf tobacco was $2.09\%$ and the expanded uncertainty by multiplying by the coverage factor(k, 2.20) was $0.13\%\;at\;a\;95\%$ confidence level.

Comparing Prediction Uncertainty Analysis Techniques of SWAT Simulated Streamflow Applied to Chungju Dam Watershed (충주댐 유역의 유출량에 대한 SWAT 모형의 예측 불확실성 분석 기법 비교)

  • Joh, Hyung-Kyung;Park, Jong-Yoon;Jang, Cheol-Hee;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.861-874
    • /
    • 2012
  • To fulfill applicability of Soil and Water Assessment Tool (SWAT) model, it is important that this model passes through a careful calibration and uncertainty analysis. In recent years, many researchers have come up with various uncertainty analysis techniques for SWAT model. To determine the differences and similarities of typical techniques, we applied three uncertainty analysis procedures to Chungju Dam watershed (6,581.1 $km^2$) of South Korea included in SWAT-Calibration Uncertainty Program (SWAT-CUP): Sequential Uncertainty FItting algorithm ver.2 (SUFI2), Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol). As a result, there was no significant difference in the objective function values between SUFI2 and GLUE algorithms. However, ParaSol algorithm shows the worst objective functions, and considerable divergence was also showed in 95PPU bands with each other. The p-factor and r-factor appeared from 0.02 to 0.79 and 0.03 to 0.52 differences in streamflow respectively. In general, the ParaSol algorithm showed the lowest p-factor and r-factor, SUFI2 algorithm was the highest in the p-factor and r-factor. Therefore, in the SWAT model calibration and uncertainty analysis of the automatic methods, we suggest the calibration methods considering p-factor and r-factor. The p-factor means the percentage of observations covered by 95PPU (95 Percent Prediction Uncertainty) band, and r-factor is the average thickness of the 95PPU band.

Analyze the parameter uncertainty of SURR model using Bayesian Markov Chain Monte Carlo method with informal likelihood functions

  • Duyen, Nguyen Thi;Nguyen, Duc Hai;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.127-127
    • /
    • 2021
  • In order to estimate parameter uncertainty of hydrological models, the consideration of the likelihood functions which provide reliable parameters of model is necessary. In this study, the Bayesian Markov Chain Monte Carlo (MCMC) method with informal likelihood functions is used to analyze the uncertainty of parameters of the SURR model for estimating the hourly streamflow of Gunnam station of Imjin basin, Korea. Three events were used to calibrate and one event was used to validate the posterior distributions of parameters. Moreover, the performance of four informal likelihood functions (Nash-Sutcliffe efficiency, Normalized absolute error, Index of agreement, and Chiew-McMahon efficiency) on uncertainty of parameter is assessed. The indicators used to assess the uncertainty of the streamflow simulation were P-factor (percentage of observed streamflow included in the uncertainty interval) and R-factor (the average width of the uncertainty interval). The results showed that the sensitivities of parameters strongly depend on the likelihood functions and vary for different likelihood functions. The uncertainty bounds illustrated the slight differences from various likelihood functions. This study confirms the importance of the likelihood function selection in the application of Bayesian MCMC to the uncertainty assessment of the SURR model.

  • PDF

Improvement and application of DeCART/MUSAD for uncertainty analysis of HTGR neutronic parameters

  • Han, Tae Young;Lee, Hyun Chul;Cho, Jin Young;Jo, Chang Keun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.461-468
    • /
    • 2020
  • The improvements of the DeCART/MUSAD code system for uncertainty analysis of HTGR neutronic parameters are presented in this paper. The function for quantifying an uncertainty of critical-spectrumweighted few group cross section was implemented using the generalized adjoint B1 equation solver. Though the changes between the infinite and critical spectra cause a considerable difference in the contribution by the graphite scattering cross section, it does not significantly affect the total uncertainty. To reduce the number of iterations of the generalized adjoint transport equation solver, the generalized adjoint B1 solution was used as the initial value for it and the number of iterations decreased to 50%. To reflect the implicit uncertainty, the correction factor was derived with the resonance integral. Moreover, an additional correction factor for the double heterogeneity was derived with the effective cross section of the DH region and it reduces the difference from the complete uncertainty. The code system was examined with the MHTGR-350 Ex.II-2 3D core benchmark. The keff uncertainty for Ex.II-2a with only the fresh fuel block was similar to that of the block and the uncertainty for Ex.II-2b with the fresh fuel and the burnt fuel blocks was smaller than that of the fresh fuel block.

Risk Evaluation and Uncertainty Analysis in Hydraulic Design system (수공구조물 설계 시스템의 위험도 평가와 불확실성 해석)

  • Chang, Suk-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.194-200
    • /
    • 1998
  • Risk, probability of failure, which includes various uncertainties and influential factors of performance should be accounted for in engineering system. Recently, several different methods to analysis risk evaluation evolved and one of the practical method is FOSM (First Order Second Moment Method ). FOSM method is derived in terms of terms coefficient of variance to uncertainties which influence various factor. For risk evaluation and uncertainty analysis in hydraulic design system, load-capacity relationship is adopted in this paper. Sample catchment with design of sewer system is applied, which plots safety factor vs. risk. Risk evaluation and uncertainty analysis are very to important develop optimal design model in hydraulic system

  • PDF

A Correlational Study on Uncertainty, Mastery and Appraisal of Uncertainty in Hospitalized Children's Mothers (입원 아동 어머니가 지각하는 불확실성, 극복력 및 불확실성 인지의 관계)

  • Yoo, Kyung-Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.37 no.4
    • /
    • pp.594-602
    • /
    • 2007
  • Purpose: This study was conducted to investigate the correlation among uncertainty, mastery and appraisal of uncertainty in hospitalized children's mothers. Method: Self report questionnaires were used to measure the variables Variables were uncertainty, mastery and appraisal of uncertainty. In data analysis, the SPSSWIN 12.0 program was utilized for descriptive statistics, Pearson's correlation coefficients, and regression analysis. Result: Reliability of the instruments was cronbach's $alpha=.84{\sim}.94$. Mastery negatively correlated with uncertainty(r=-.444, p=.000) and danger appraisal of uncertainty(r=-.514, p=.000). In regression of danger appraisal of uncertainty, uncertainty and mastery were significant predictors explaining 39.9%. Conclusion: Mastery was a significant mediating factor between uncertainty and danger appraisal of uncertainty in hospitalized children's mothers. Therefore, nursing interventions which improve mastery must be developed for hospitalized children's mothers.