• Title/Summary/Keyword: Uncertain Parameters

Search Result 445, Processing Time 0.028 seconds

Design of Intelligent Controller with Time Delay for Internet-Based Remote Control (인터넷 기반 원격제어를 위한 임의의 시간지연을 갖는 지능형 제어기의 설계)

  • Joo, Young-Hoon;Kim, Jung-Chan;Lee, Oh-Jae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.293-299
    • /
    • 2003
  • This paper discusses a design of intelligent controller with time delay for Internet-based remote control. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The Takagi-Sugeno (T-S) fuzzy system with uncertain input delay is utilized to represent nonlinear plant. The continuous-time T-S fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretized T-S fuzzy system is represented by a discrete-time T-S fuzzy system with jumping parameters. The robust stochastic stabilizibility of the jump T-S fuzzy system is derived and formulated in terms of linear matrix inequalities (LMIs). An experimental results is provided to visualize the feasibility of the proposed method.

New GPU computing algorithm for wind load uncertainty analysis on high-rise systems

  • Wei, Cui;Luca, Caracoglia
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.461-487
    • /
    • 2015
  • In recent years, the Graphics Processing Unit (GPU) has become a competitive computing technology in comparison with the standard Central Processing Unit (CPU) technology due to reduced unit cost, energy and computing time. This paper describes the derivation and implementation of GPU-based algorithms for the analysis of wind loading uncertainty on high-rise systems, in line with the research field of probability-based wind engineering. The study begins by presenting an application of the GPU technology to basic linear algebra problems to demonstrate advantages and limitations. Subsequently, Monte-Carlo integration and synthetic generation of wind turbulence are examined. Finally, the GPU architecture is used for the dynamic analysis of three high-rise structural systems under uncertain wind loads. In the first example the fragility analysis of a single degree-of-freedom structure is illustrated. Since fragility analysis employs sampling-based Monte Carlo simulation, it is feasible to distribute the evaluation of different random parameters among different GPU threads and to compute the results in parallel. In the second case the fragility analysis is carried out on a continuum structure, i.e., a tall building, in which double integration is required to evaluate the generalized turbulent wind load and the dynamic response in the frequency domain. The third example examines the computation of the generalized coupled wind load and response on a tall building in both along-wind and cross-wind directions. It is concluded that the GPU can perform computational tasks on average 10 times faster than the CPU.

Bandwidth Reservation scheme Using Mobile Tracking (이동체 추적을 이용한 대역폭 예약 기법)

  • 정혜명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10A
    • /
    • pp.1512-1520
    • /
    • 2000
  • The wireless communication network is evolving toward IMT-2000 for providing various multimedia services. In order to accomplish this ultimate goal the effective schemes are required which can dynamically utilize the limited wireless resources based on different traffic characteristics of various services. This paper proposes a novel bandwidth allocation and call admission control scheme to transmit multimedia traffic based on the bandwidth reservation procedure using direction estimation in the IMT-2000 This scheme estimates the position of mobiles based on the mliticriteria decision making in which uncertain parameters such as RSS(Received Signal Strength), the distance between mobile and base station the moving direction and the previous location are participated in the decision process using aggregation function in fuzzy set theory. Its effectiveness is investigated by simulation.

  • PDF

A Hybrid Correction Technique of Missing Load Data Based on Time Series Analysis

  • Lee, Chan-Joo;Park, Jong-Bae;Lee, Jae-Yong;Shin, Joong-Rin;Lee, Chang-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.254-261
    • /
    • 2004
  • Traditionally, electrical power systems had formed the vertically integrated industry structures based on the economics of scale. However, power systems have been recently reformed to increase their energy efficiency. According to these trends, the Korean power industry underwent partial reorganization and competition in the generation market was initiated in 2001. In competitive electric markets, accurate load data is one of the most important issues to maintaining flexibility in the electric markets as well as reliability in the power systems. In practice, the measuring load data can be uncertain because of mechanical trouble, communication jamming, and other issues. To obtain reliable load data, an efficient evaluation technique to adjust the missing load data is required. This paper analyzes the load pattern of historical real data and then the tuned ARIMA (Autoregressive Integrated Moving Average), PCHIP (Piecewise Cubic Interpolation) and Branch & Bound method are applied to seek the missing parameters. The proposed method is tested under a variety of conditions and also tested against historical measured data from the Korea Energy Management Corporation (KEMCO).

Adaptive Robust Control of Mechanical Systems with Uncertain Nonlinear Dynamic Friction (비선형 마찰력이 있는 시스템의 강인한 적응제어기법)

  • Lee, Tae-Bong;Yang, Hyun-Suk;Kim, Byung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5194-5201
    • /
    • 2011
  • In this paper, an adaptive nonlinear friction compensation scheme for second-order nonlinear mechanical system with a partially known nonlinear dynamic friction is proposed to achieve asymptotic position and velocity tracking in the absence of disturbances and modeling errors. It is also shown that even with disturbances and modeling errors, in contrast to existing other adaptive control schemes, by proper adjustment of design parameters, reduced error bounds on position and velocity tracking can be achieved.

Effects of nonpharmacological interventions on the psychological health of high-risk pregnant women: a systematic review and meta-analysis

  • Yoo, Hyeji;Ahn, Sukhee
    • Women's Health Nursing
    • /
    • v.27 no.3
    • /
    • pp.180-195
    • /
    • 2021
  • Purpose: This study aimed to summarize the current evidence on the effects of nonpharmacological interventions on psychological health outcomes for women with high-risk pregnancies due to conditions such as preeclampsia, gestational diabetes, or preterm labor. Methods: The following databases were searched from January 2000 to December 2020: PubMed, Ovid Embase, CINAHL, Web of Science, DBpia, RISS, and KISS. Two investigators independently reviewed and selected articles according to the inclusion/exclusion criteria. RoB 2 and the ROBINS-I checklist were used to evaluate study quality. Results: Twenty-nine studies with a combined total of 1,806 pregnant women were included in the systematic review and meta-analysis. Psychological health improvements were found in women with preeclampsia (Hedges' g=-0.67; 95% confidence interval [CI], -0.91 to -0.44), gestational diabetes (Hedges' g=-0.38; 95% CI, -0.54 to -0.12), and preterm labor (Hedges' g=-0.73; 95% CI, -1.00 to -0.46). The funnel plot was slightly asymmetrical, but the fail-safe N value and the trim-and-fill method showed no publication bias. Conclusion: Nonpharmacological interventions for women with high-risk pregnancies due to conditions such as preeclampsia, gestational diabetes, and preterm labor can improve psychological parameters such as anxiety, stress, and depression. Nurses can play a pivotal role in the nursing management of pregnant women with high-risk conditions and apply various types of nonpharmacological interventions to meet their needs in uncertain and anxious times during pregnancy.

Basic Experimental Study for Ice-Concrete Friction Behavior (빙-콘크리트 마찰 특성 평가를 위한 실험적 기초 연구)

  • Do, Youngjun;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.365-372
    • /
    • 2020
  • Ice induced abrasion is known as a critical problem in concrete gravity based offshore structures, which are mainly used in the arctic regions. Although many researches on ice abrasion have been conducted for the last several decades, there still are some difficulties in designing concrete gravity based offshore structures against abrasion problem because there is no standardized method yet due to the uncertain physics involved in. This paper presents an experimental study for the evaluation of concrete abrasion characteristics due to ice friction on concrete surface. For the test, a testing machine capable of abrasion and friction was designed and produced, and standardized procedure was proposed to produce ice specimen used for abrasion test. For the experiment, compressive strength of the ice specimen were explored through a static compression test. Then the friction test between ice specimen and concrete surface was performed and friction coefficients were derived using measured vertical and horizontal forces. Dependency of friction coefficients on some test parameters were studied and discussed as well.

Exploring market uncertainty in early ship design

  • Zwaginga, Jesper;Stroo, Ko;Kana, Austin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.352-366
    • /
    • 2021
  • To decrease Europe's harmful emissions, the European Union aims to substantially increase its offshore wind energy capacity. To further develop offshore wind energy, investment in ever-larger construction vessels is necessary. However, this market is characterised by seemingly unpredictable growth of market demand, turbine capacity and distance from shore. Currently it is difficult to deal with such market uncertainty within the ship design process. This research aims to develop a method that is able to deal with market uncertainty in early ship design by increasing knowledge when design freedom is still high. The method uses uncertainty modelling prior to the requirement definition stage by performing global research into the market, and during the concept design stage by iteratively co-evolving the vessel design and business case in parallel. The method consists of three parts; simulating an expected market from data, modelling multiple vessel designs, and an uncertainty model that evaluates the performance of the vessels in the market. The case study into offshore wind foundation installation vessels showed that the method can provide valuable insight into the effect of ship parameters like main dimensions, crane size and ship speed on the performance in an uncertain market. These results were used to create a value robust design, which is capable of handling uncertainty without changes to the vessel. The developed method thus provides a way to deal with market uncertainty in the early ship design process.

Design wind speed prediction suitable for different parent sample distributions

  • Zhao, Lin;Hu, Xiaonong;Ge, Yaojun
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.423-435
    • /
    • 2021
  • Although existing algorithms can predict wind speed using historical observation data, for engineering feasibility, most use moment methods and probability density functions to estimate fitted parameters. However, extreme wind speed prediction accuracy for long-term return periods is not always dependent on how the optimized frequency distribution curves are obtained; long-term return periods emphasize general distribution effects rather than marginal distributions, which are closely related to potential extreme values. Moreover, there are different wind speed parent sample types; how to theoretically select the proper extreme value distribution is uncertain. The influence of different sampling time intervals has not been evaluated in the fitting process. To overcome these shortcomings, updated steps are introduced, involving parameter sensitivity analysis for different sampling time intervals. The extreme value prediction accuracy of unknown parent samples is also discussed. Probability analysis of mean wind is combined with estimation of the probability plot correlation coefficient and the maximum likelihood method; an iterative estimation algorithm is proposed. With the updated steps and comparison using a Monte Carlo simulation, a fitting policy suitable for different parent distributions is proposed; its feasibility is demonstrated in extreme wind speed evaluations at Longhua and Chuansha meteorological stations in Shanghai, China.

THE VALUATION OF TIMER POWER OPTIONS WITH STOCHASTIC VOLATILITY

  • MIJIN, HA;DONGHYUN, KIM;SERYOONG, AHN;JI-HUN, YOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.296-309
    • /
    • 2022
  • Timer options are one of the contingent claims that, for given the variance budget, its payoff depends on a random maturity in terms of the realized variance unlike the standard European vanilla option with a fixed time maturity. Since it was first launched by Société Générale Corporate and Investment Banking in 2007, the valuation of the timer options under several stochastic environment for the volatility has been conducted by many researches. In this study, we propose the pricing of timer power options combined with standard timer options and the index of the power to the underlying asset for the investors to actualize lower risks and higher returns at the same time under the uncertain markets. By using the asymptotic analysis, we obtain the first-order approximation of timer power options. Moreover, we demonstrate that our solution has been derived accurately by comparing it with the solution from the Monte-Carlo method. Finally, we analyze the impact of the stochastic volatility with regards to various parameters on the timer power options numerically.