• Title/Summary/Keyword: Uncertain Dynamic Systems

Search Result 137, Processing Time 0.02 seconds

Finite element model updating of Kömürhan highway bridge based on experimental measurements

  • Bayraktar, Alemdar;Altunisik, Ahmet Can;Sevim, Baris;Turker, Temel
    • Smart Structures and Systems
    • /
    • v.6 no.4
    • /
    • pp.373-388
    • /
    • 2010
  • The updated finite element model of K$\ddot{o}$m$\ddot{u}$rhan Highway Bridge on the Firat River located on the $51^{st}$ km of Elazi$\breve{g}$-Malatya highway is obtained by using analytical and experimental results. The 2D and 3D finite element model of the bridge is created by using SAP2000 structural analyses software, and the dynamic characteristics of the bridge are determined analytically. The experimental measurements are carried out by Operational Modal Analysis Method under traffic induced vibrations and the dynamic characteristics are obtained experimentally. The vibration data are gathered from the both box girder and the deck of the bridge, separately. Due to the expansion joint in the middle of the bridge, special measurement points are selected when experimental test setups constitute. Measurement duration, frequency span and effective mode number are determined by considering similar studies in literature. The Peak Picking method in the frequency domain is used in the modal identification. At the end of the study, analytical and experimental dynamic characteristic are compared with each other and the finite element model of the bridge is updated by changing some uncertain parameters such as material properties and boundary conditions. Maximum differences between the natural frequencies are reduced from 10% to 2%, and a good agreement is found between natural frequencies and mode shapes after model updating.

Design of a Neuro-Euzzy Controller for Hydraulic Servo Systems (유압서보 시스템을 위한 뉴로-퍼지 제어기 설계)

  • 김천호;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.101-111
    • /
    • 1993
  • Many processes such as machining, injection-moulding and metal-forming are usually operated by hydraulic servo-systems. The dynamic characteristics of these systems are complex and highly non-linear and are often subjected to the uncertain external disturbances associated with the processes. Consequently, the conventional approach to the controller design for these systems may not guarantee accurate tracking control performance. An effective neuro-fuzzy controller is proposed to realize an accurate hydraulic servo-system regardless of the uncertainties and the external disturbances. For this purpose, first, we develop a simplified fuzzy logic controller which have multidimensional and unsymmetric membership functions. Secondly, we develop a neural network which consists of the parameters of the fuzzy logic controller. It is show that the neural network has both learning capability and linguistic representation capability. The proposed controller was implemented on a hydraulic servo-system. Feedback error learning architecture is adopted which uses the feedback error directly without passing through the dynamics or inverse transfer function of the hydraulic servo-system to train the neuro-fuzzy controller. A series of simulations was performed for the position-tracking control of the system subjected to external disturbances. The results of simulations show that regardless of inherent non-linearities and disturbances, an accuracy tracking-control performance is obtained using the proposed neuro-fuzzy controller.

Meta-model-based Design Method for Frequency-domain Performance Reliability Improvement (주파수 영역에서의 성능 신뢰도 향상을 위한 메타 모델을 이용한 설계 방법)

  • Son, Young Kap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.19-26
    • /
    • 2015
  • This paper proposes a design method for improving the frequency-domain performance reliability of dynamic systems with uncertain and degrading components. Discrete frequencies are used in this method as surrogates for the frequency band of interest, and the conformance of the frequency responses to the specification at these frequencies is utilized to model the frequency-domain performance reliability. A meta-model for the frequency responses, an extreme-value event, and the set-theory are integrated to improve the computational efficiency of the reliability estimation. In addition, a sample-based approach is presented to evaluate and optimize the estimated performance reliability. A case study of a vibration absorber system showed that the proposed design method has engineering applications.

Robust decentralized control of structures using the LMI Hcontroller with uncertainties

  • Raji, Roya;Hadidi, Ali;Ghaffarzadeh, Hosein;Safari, Amin
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.547-560
    • /
    • 2018
  • This paper investigates the operation of the $H_{\infty}$ static output-feedback controller to reduce dynamic responses under seismic excitation on the five-story and benchmark 20 story building with parametric uncertainties. Linear matrix inequality (LMI) control theory is applied in this system and then to achieve the desired LMI formulations, some transformations of the LMI variables is used. Conversely uncertainties due to material properties, environmental loads such as earthquake and wind hazards make the uncertain system. This problem and its effects are studied in this research. Also to decrease the transition of large amount of data between sensors and controller, avoiding the disruption of whole control system and economy problems, the operation of the decentralized controllers is investigated in this paper. For this purpose the comparison between the performance of the centralized, fully decentralized and partial decentralized controllers in uncoupled and coupled cases is performed. Also, the effect of the changing the number of stories in substructures is considered. Based on the numerical results, the used control algorithm is very robust against the parametric uncertainties and structural responses are decreased considerably in all the control cases but partial decentralized controller in coupled form gets the closest results to the centralized case. The results indicate the high applicability of the used control algorithm in the tall shear buildings to reduce the structural responses and its robustness against the uncertainties.

Modal identification of Canton Tower under uncertain environmental conditions

  • Ye, Xijun;Yan, Quansheng;Wang, Weifeng;Yu, Xiaolin
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.353-373
    • /
    • 2012
  • The instrumented Canton Tower is a 610 m high-rise structure, which has been considered as a benchmark problem for structural health monitoring (SHM) research. In this paper, an improved automatic modal identification method is presented based on a natural excitation technique in conjunction with the eigensystem realization algorithm (NExT/ERA). In the proposed modal identification method, damping ratio, consistent mode indicator from observability matrices (CMI_O) and modal amplitude coherence (MAC) are used as criteria to distinguish the physically true modes from spurious modes. Enhanced frequency domain decomposition (EFDD), the data-driven stochastic subspace identification method (SSI-DATA) and the proposed method are respectively applied to extract the modal parameters of the Canton Tower under different environmental conditions. Results of modal parameter identification based on output-only measurements are presented and discussed. User-selected parameters used in those methods are suggested and discussed. Furthermore, the effect of environmental conditions on the dynamic characteristics of Canton tower is investigated.

Vibration control of high-rise buildings for wind: a robust passive and active tuned mass damper

  • Aly, Aly Mousaad
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.473-500
    • /
    • 2014
  • Tuned mass dampers (TMDs) have been installed in many high-rise buildings, to improve their resiliency under dynamic loads. However, high-rise buildings may experience natural frequency changes under ambient temperature fluctuations, extreme wind loads and relative humidity variations. This makes the design of a TMD challenging and may lead to a detuned scenario, which can reduce significantly the performance. To alleviate this problem, the current paper presents a proposed approach for the design of a robust and efficient TMD. The approach accounts for the uncertain natural frequency, the optimization objective and the input excitation. The study shows that robust design parameters can be different from the optimal parameters. Nevertheless, predetermined optimal parameters are useful to attain design robustness. A case study of a high-rise building is executed. The TMD designed with the proposed approach showed its robustness and effectiveness in reducing the responses of high-rise buildings under multidirectional wind. The case study represents an engineered design that is instructive. The results show that shear buildings may be controlled with less effort than cantilever buildings. Structural control performance in high-rise buildings may depend on the shape of the building, hence the flow patterns, as well as the wind direction angle. To further increase the performance of the robust TMD in one lateral direction, active control using LQG and fuzzy logic controllers was carried out. The performance of the controllers is remarkable in enhancing the response reduction. In addition, the fuzzy logic controller may be more robust than the LQG controller.

A Research on the Vehicle Routing Problem in the Disaster Scene (재난 현장의 구호 자원 운송 차량 경로에 관한 연구)

  • Han, Sumin;Jeong, Hanil;Kim, Kidong;Park, Jinwoo
    • Korean Management Science Review
    • /
    • v.33 no.1
    • /
    • pp.101-117
    • /
    • 2016
  • In 2000s, incidence of natural disaster is increasing continuously. Therefore, the necessity of research on the effective disaster response is emphasized. Korea is not safe from natural disaster. Natural disasters like torrential downpours, typhoons have occurred more frequently than before. In addition disasters like droughts and MERS has also occurred. Therefore, needs for effective systems and algorithms to respond disaster are increased. This study covers the vehicle routing problem for effective logistics in disaster situations caused by natural disasters. The emergency vehicle route problem has different property from the general vehicle route problem. It has the property of the importance of deadline, the uncertain and dynamic demand information, and the uncertainty in information transfer. In this study, a solution that focused on the importance of deadline. In this study, the heuristic solution using the genetic algorithm are suggested. Finally the simulation experiment which reflects the actual environment are conducted to verify the performance of the solution.

A non-linear tracking control scheme for an under-actuated autonomous underwater robotic vehicle

  • Mohan, Santhakumar;Thondiyath, Asokan
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.120-135
    • /
    • 2011
  • This paper proposes a model based trajectory tracking control scheme for under-actuated underwater robotic vehicles. The difficulty in stabilizing a non-linear system using smooth static state feedback law means that the design of a feedback controller for an under-actuated system is somewhat challenging. A necessary condition for the asymptotic stability of an under-actuated vehicle about a single equilibrium is that its gravitational field has nonzero elements corresponding to non-actuated dynamics. To overcome this condition, we propose a continuous time-varying control law based on the direct estimation of vehicle dynamic variables such as inertia, damping and Coriolis & centripetal terms. This can work satisfactorily under commonly encountered uncertainties such as an ocean current and parameter variations. The proposed control law cancels the non-linearities in the vehicle dynamics by introducing non-linear elements in the input side. Knowledge of the bounds on uncertain terms is not required and it is conceptually simple and easy to implement. The controller parameter values are designed using the Taguchi robust design approach and the control law is verified analytically to be robust under uncertainties, including external disturbances and current. A comparison of the controller performance with that of a linear proportional-integral-derivative (PID) controller and sliding mode controller are also provided.

Seismic response distribution estimation for isolated structures using stochastic response database

  • Eem, Seung-Hyun;Jung, Hyung-Jo
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.937-956
    • /
    • 2015
  • Seismic isolation systems decouple structures from ground motions to protect them from seismic events. Seismic isolation devices have been implemented in many full-scale buildings and bridges because of their simplicity, economic effectiveness, inherent stability, and reliability. It is well known that the most uncertain aspect for obtaining the accurate responses of an isolated structure from seismic events is the seismic loading itself. It is needed to know the seismic response distributions of the isolated structure resulting from the randomness of earthquakes when probabilistic designing or probabilistic evaluating an isolated structure. Earthquake time histories are useful and often an essential element for designing or evaluating isolated structures. However, it is very challenging to gather the design and evaluation information for an isolated structure from many seismic analyses. In order to evaluate the seismic performance of an isolated structure, numerous nonlinear dynamic analyses need to be performed, but this is impractical. In this paper, the concept of the stochastic response database (SRD) is defined to obtain the seismic response distributions of an isolated structure instantaneously, thereby significantly reducing the computational efforts. An equivalent model of the isolated structure is also developed to improve the applicability and practicality of the SRD. The effectiveness of the proposed methodology is numerically verified.

Investigation on the masonry vault by experimental and numerical approaches

  • Guner, Yunus;Ozturk, Duygu;Ercan, Emre;Nuhoglu, Ayhan
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • Masonry constructions exhibit uncertain behaviors under dynamic effects such as seismic action. Complex issues arise in the idealization of structural systems of buildings having different material types and mechanical properties. In this study, the structural behavior of a vaulted masonry building constructed using full clay brick and lime-based mortar and sitting on consecutive arches was investigated by experimental and numerical approaches. The dimensions of the structure built in the laboratory were 391 × 196 cm, and its height was 234 cm. An incremental repetitive loading was applied to the prototype construction model. Along the gradually increasing loading pattern, the load-displacement curves of the masonry structure were obtained with the assistance of eight linear displacement transducers. In addition, crack formation areas, and relevant causes of its formation were determined. The experimental model was idealized using the finite element method, and numerical analyses were performed for the area considered as linear being under similar loading effect. From the linear analyses, the displacement values and stress distribution of the numerical model were obtained. In addition, the effects of tie members, frequently being used in the supports of curved load-bearing elements, on the structural behavior were examined. Consequently, the experimental and numerical analysis results were comparatively evaluated.