• Title/Summary/Keyword: Ultraviolet intensity

Search Result 196, Processing Time 0.026 seconds

Cathodoluminescence of $Mg_2$$SnO_4$:Mn,:Mn Green Phosphor under Low-Voltage Electron Excitation ($Mg_2$$SnO_4$:Mn 녹색 형광체의 저전압 음극선 발광 특성)

  • Kim, Gyeong-Nam;Jeong, Ha-Gyun;Park, Hui-Dong;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.759-762
    • /
    • 2001
  • Mg$_2$SnO$_4$having an inverse spinel structure was selected as a new host material of $Mn^{2+}$ activator. The luminescence of the $Mg_2$SnO$_4$:Mn phosphor prepared by the solid-state reaction were investigated under ultraviolet and low-voltage electron excitation. The Mn-doped magnesium tin oxide exhibited strong green emission with the spectrum centered at 500nm wavelength. It was explained that the green emission in $Mg_2$SnO$_4$:Mn phosphor is due to energy transfer from $^4T_1to ^6A_1\;of\; Mn^{2+}$ ion at tetrahedral site in the spinel structure. The optimum concentration of $Mn^{2+}$/ion exhibiting maximum emission intensity by the low-voltage electron excitation was 0.6mol%. ?

  • PDF

Simulation of Low Temperature Plasmas for an Ultra Violet Light Source using Coplanar Micro Dielectric Barrier Discharges

  • Bae, Hyowon;Lee, Ho-Jun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.138-144
    • /
    • 2016
  • The discharge characteristics of pulse-driven coplanar micro barrier discharges for an ultraviolet (UV) light source using Ne-Xe mixture have been investigated using a two-dimensional fluid simulation at near-atmospheric pressure. The densities of electrons, the radiative excited states, the metastable excited states, and the power loss are investigated with the variations of gas pressure and the gap distance. With a fixed gap distance, the number of the radiative states $Xe^*(^3P_1)$ increases with the increasing driving voltage, but this number shows weak dependency on the gas when that pressure is over 400 Torr. However, the number of the radiative states increases with the increase of the gap distance at a fixed voltage, while the power loss decreases. Therefore, a long gap discharge has higher efficiency for UV generation than does a short gap discharge. A slight change in the electrode tilt angle enhances the number of radiative species 2 or 3 times with the same operation conditions. Therefore, the intensity and efficiency of the UV light source can be controlled independently by changing the gap distance and the electrode structure.

Aerosol Synthesis of Gd2O3:Eu/Bi Nanophosphor for Preparation of Photofunctional Pearl Pigment as Security Material

  • Jung, Kyeong Youl;Han, Jang Hoon;Kim, Dae Sung;Choi, Byung-Ki;Kang, Wkang-Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.461-472
    • /
    • 2018
  • $Gd_2O_3:Eu/Bi$ nanoparticles were synthesized via spray pyrolysis and applied for the preparation of a luminescent pearl pigment as an anti-counterfeiting material. The luminescence properties were optimized by changing the $Eu^{3+}$ and $Bi^{3+}$ concentration. Ethylene glycol was used as an organic additive to prepare the $Gd_2O_3:Eu/Bi$ nanoparticles. The highest emission intensity was achieved when the total dopant content was 10.0 at.% and the mole fraction of Bi was 0.1. The concentration quenching was mainly due to dipole-dipole interactions between the same activators, and the critical distances were 9.0 and $19.6{\AA}$ for $Eu^{3+}$ and $Bi^{3+}$, respectively. The prepared $Gd_2O_3:Eu/Bi$ powder exhibited an average size of approximately 82.5 nm and a narrow size distribution. Finally, the $Gd_2O_3:Eu/Bi$ nanophosphor coated on the surface of the pearl pigment was confirmed to have good red emission under irradiation from a portable ultraviolet light-emitting diode lamp (365 nm).

Preparation and Luminescene properties with invisible inoranic phosphors of nano size (나노크기의 비가시 무기형광체 제조와 발광특성)

  • Jeong, Jae-Hoon;Yun, Hyun;Jang, Gyu-Hwan;Shin, Sang-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.461-462
    • /
    • 2008
  • $BaMgAl_{10}O_{17}$:Mn, $Eu^{2+}$ green phosphors has been synthesized by the solid state reaction. Green phosphors of nano-size were manufactured in short time by shake method. which were easily manufactured respectively general method. Green phosphors of nano size were control additive, size of $ZrO_3$ ball, shake time and weight of ball in toluene. In result that green phosphors were obtained particle size of 140nm~150nm. The characteristics of fired samples were obtained by 365nm and 380nm excitation source under ultraviolet. In result that the highest PL intensity were observed in wavelength of 365nm.

  • PDF

Effects of the Characteristics of Precursor Powders and AlF3 Flux on the Properties of Blue-Emitting BAM:Eu Phosphor Powders (전구체의 특성 및 AlF3 융제가 청색 발광의 BAM:Eu 형광체의 특성에 미치는 영향)

  • Cho, Jung-Sang;Lee, Sang-Ho;Kang, Yun-Chan
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.137-142
    • /
    • 2008
  • Blue-emitting BAM:Eu phosphor powders were formed by post-treatment of precursor powders with hollow or dense morphologies. The morphologies of the precursor powders obtained by spray pyrolysis were controlled by changing the preparation conditions and by changing the type of spray solution. The effects of the morphologies of the precursor powders on the characteristics of the BAM : Eu phosphor powders reacted with $AlF_3$ flux were investigated. Precursor powders with a spherical shape and a hollow morphology produced BAM : Eu phosphor powders with a plate-like morphology, a fine size and a narrow size distribution. On the other hand, precursor powders with a spherical shape and dense morphology produced BAM : Eu phosphor powders with a plate-like morphology and a large size. $AlF_3$ flux improved the photoluminescence intensities of the BAM : Eu phosphor powders. The photoluminescence intensity of the fine-sized BAM : Eu phosphor powders with a plate-like morphology was 90% of the commercial product under vacuum ultraviolet conditions.

Study on Maillard Reaction Products Derived from Aqueous and Ethanolic Fructose-Glycine and Its Oligomer Solutions

  • Kim, Ji-Sang
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.297-303
    • /
    • 2010
  • The present study compared the Maillard reaction products (MRPs) derived from aqueous and ethanolic fructoseglycine and its oligomer (dimer and trimer) solutions. The pH was lower in glycine (G) than in diglycine (DG) and triglycine (TG) in both aqueous and ethanolic solutions, but the pH difference between the DG and TG was not significant. MRPs derived from the DG had a greater absorbance at 294 and 420 nm in ethanolic solution than in an aqueous solution. In particular, the loss of sugar was higher in ethanolic solution than in aqueous solution. Enolization of fructose was observed in both aqueous and ethanolic MRP solutions; however, enolization was not observed for the G in aqueous MRP solutions. The glycine oligomer content in ethanolic MRP solutions remained higher than that in aqueous MRP solutions. Furthermore, neither diglycine nor triglycine were detected in the G aqueous or ethanolic MRP solutions, while triglycine was detected in both the DG aqueous and ethanolic MRP solutions. Absorption in the ultraviolet-visible (UV-Vis) spectra was higher with MRPs derived from the ethanolic solution than with those derived from the aqueous solution. MRPs derived from the DG in an ethanolic solution showed the highest absorption intensity.

Investigation of Photoelectrochemical Water Splitting for Mn-Doped In2O3 Film

  • Sun, Xianke;Fu, Xinhe;You, Tingting;Zhang, Qiannan;Xu, Liuyang;Zhou, Xiaodong;Yuan, Honglei;Liu, Kuili
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.733-738
    • /
    • 2018
  • Undoped and Mn-doped $In_2O_3$ films were prepared by radiofrequency magnetron sputtering technique. The effects of Mn doping on the structural and optical properties of as-prepared films were investigated using X-ray diffraction, X-ray photoelectron spectroscopy and ultraviolet-visible spectroscopy. Mn doping can enhance the intensity of (222) peak in Mn-doped $In_2O_3$ thin film, indicating Mn dopant promotes preferred orientation of crystal growth along (222) plane. XPS analyses revealed that the doped Mn ions exist at + 2 oxidation states, substituting for the $In^{3+}$ sites in the $In_2O_3$ lattice. UV-Vis measurements show that the optical band gap $E_g$ decreases from 3.33 to 2.87 eV with Mn doping in $In_2O_3$, implying an increasing sp-d exchange interaction in the film. Our work demonstrates a practical means to manipulate the band gap energy of $In_2O_3$ thin film via Mn impurity doping, and significantly improves the photoelectrochemical activity.

Flavor and taste characteristic of black pepper by different nonthermal sterilization methods (비가열 살균 후추의 향미특성)

  • Lee, Gwang Min;Shin, Jung Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.551-557
    • /
    • 2019
  • The purpose of this study was to investigate the changes of flavor and taste characteristics of black pepper treated with three different nonthermal sterilization methods, which are intense pulsed light (IPL), ultraviolet (UV), and cold plasma (CP). Also, the sensorial and instrumental evaluation of black pepper before and after nonthermal treatments were analyzed. As a result of color value, UV and CP treatments did not show chromacity difference (ΔE), but IPL treatment showed a significant difference of 6.58. Piperine contents of sample before nonthermal treatments was 10.7±0.53 mg/g and the piperine contents of all samples decreased after nonthermal treatments. The result of the electronic nose analysis were divided into two groups before and after nonthermal treatments, and divided into three group by principle component analysis. According to the intensity test, after nonthermal treatments, all sample had low flavor and taste, and the intensity was in the order of IPL, CP, and UV. In thirteen sensory attribute languages developed through quantitiative descriptive analysis (QDA), the intensity value of the samples were low after nonthermal treatments.

Change of fluorescence in ambers according to artificial aging (인공열화에 따른 호박(amber)의 형광특성 변화)

  • Park, Jong-Seo;Lim, Yu-Jin
    • Analytical Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.197-206
    • /
    • 2012
  • Ambers are composed of polymer molecules which contain aromatic moieties such as benzene, naphthalene, phenanthrene and anthracene. They emit fluorescence when irradiated with ultraviolet light, which was used for confirming an amber. The fluorescence of amber, however, tends to decrease as the surface of amber is weathered with light, heat, oxygen for a long time. In this study, the reliability of confirming amber with its fluorescence by measuring the changes of fluorescence after artificial aging. Aging factors were UV light (${\lambda}$=340 nm), oxygen with heat (100%, $90^{\circ}C$) and heat ($90^{\circ}C$) and aging time was for 5, 15, 30 and 60 days, respectively. In the excitation and emission spectra of amber, the intensity decreased and the maximal wavelength was shifted to longer wavelength with artificial aging time. Especially, there was a drastic decrease in the intensity of spectra to 1.7% of initial value after 60 days aging under oxygen with heat. Only in Colombian amber there showed an increase of fluorescence intensity for a certain aging time, which could be explained by the production of aromatic ring in the presence of light and heat. Conclusively, the fluorescence can be lessened by the natural weathering with light, heat and oxygen and it is not accurate to recognize amber just with UV irradiation method.

Photoluminescence Characteristics of Spherical-Shaped LaPO4:Tb Phosphor Particles Prepared by Spray Pyrolysis (분무열분해법에 의해 제조된 구형의 녹색 LaPO4:Tb 형광체의 발광특성)

  • Lee, Kyo-Kwang;Kang, Yun-Chan;Zeon, Il-Woon;Jung, Kyeong-Youl;Park, Hee-Dong
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.761-766
    • /
    • 2002
  • Fine $LaPO_4$:Tb phosphor particles with spherical shape were prepared by spray pyrolysis. The influence of the precursor type of phosphorous such as ($NH_4$)$_2$$HPO_4$, $NH_4$$H_2$$PO_4$, ($NH_4$)$_3$$PO_4$ and $H_3$$PO_4$ on the morphology and brightness of particles was investigated. As-prepared particles by spray pyrolysis had spherical shape when ($NH_4$)$_2$ $HPO_4$ and $NH_4$$H_2$$PO_4$ were used as the precursor of phosphorous. The precursor type of phosphorous affected the photoluminescence intensity of $LaPO_4$:Tb phosphor particles, but not significant. With changing the content of activator(Tb) and excess of phosphorous, the optimal composition giving the highest photoluminescence intensity was found. The spherical morphology of prepared $LaPO_4$:Tb particles was completely maintained even after the posttreatment up to $1050^{\circ}C$. When the posttreatment temperature was over $1100^{\circ}C$, the particles did not have the spherical shape anymore. However, the highest photoluminescence intensity of prepared $LaPO_4$:Tb particles was obtained at $1050^{\circ}C$. The photoluminescence characteristics of prepared $_LaPO4$:Tb under the vacuum ultraviolet(VUV) illumination was comparable with that of the commercial $Zn_2$$V_4$:Mn and (La,Ce)PO$_4$:Tb phosphor particles. At the optimal condition, the decay time of prepared spherical $LaPO_4$:Tb phosphor particles was about 6.8ms.