• Title/Summary/Keyword: Ultraviolet intensity

Search Result 196, Processing Time 0.026 seconds

Y2O3:Eu Phosphor Particles Prepared by Spray Pyrolysis from Solution Containing Flux and Polymeric Precursor (융제 및 고분자 첨가 용액으로부터 분무 열분해 공정에 의해 합성한 Y2O3:Eu 형광체)

  • Lee, Chang Hee;Jung, Kyeong Youl;Choi, Joong Gill;Kang, Yun Chan
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.80-84
    • /
    • 2005
  • Nano-sized $Y_2O_3:Eu$ phosphor particles were prepared by ultrasonic spray pyrolysis. The effect of polymeric precursor and lithium carbonate flux on the morphology and luminescence characteristics of nano-sized $Y_2O_3:Eu$ phosphor particles was investigated. When using the spray solution containing both the polymeric precursor and the flux, the $Y_2O_3:Eu$ particles with spherical shape and micron size were turned into nano-sized $Y_2O_3:Eu$ phosphor particles during the post-treatment at high temperature. The mean size of $Y_2O_3:Eu$ phosphor particles was affected by the contents of polymeric precursors and lithium carbonate flux, and preparation temperature. The as-prepared particles by spray pyrolysis at high temperature from solution containing high contents of polymeric precursors had good photoluminescence intensity under vacuum ultraviolet after post-treatment above $1,000^{\circ}C$. The prepared nano-sized $Y_2O_3:Eu$ phosphor particles had comparable photoluminescence intensity under vacuum ultraviolet light with that of the commercial $Y_2O_3:Eu$ phosphor particles prepared by solid state reaction method.

Optimization of Electro-Optical Properties of Acrylate-based Polymer-Dispersed Liquid Crystals for use in Transparent Conductive ZITO/Ag/ZITO Multilayer Films (투명 전도성 ZITO/Ag/ZITO 다층막 필름 적용을 위한 아크릴레이트 기반 고분자분산액정의 전기광학적 특성 최적화)

  • Cho, Jung-Dae;Kim, Yang-Bae;Heo, Gi-Seok;Kim, Eun-Mi;Hong, Jin-Who
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.291-298
    • /
    • 2020
  • ZITO/Ag/ZITO multilayer transparent electrodes at room temperature on glass substrates were prepared using RF/DC magnetron sputtering. Transparent conductive films with a sheet resistance of 9.4 Ω/㎡ and a transmittance of 83.2% at 550 nm were obtained for the multilayer structure comprising ZITO/Ag/ZITO (100/8/42 nm). The sheet resistance and transmittance of ZITO/Ag/ZITO multilayer films meant that they would be highly applicable for use in polymer-dispersed liquid crystal (PDLC)-based smart windows due to the ability to effectively block infrared rays (heat rays) and thereby act as an energy-saving smart glass. Effects of the thickness of the PDLC layer and the intensity of ultraviolet light (UV) on electro-optical properties, photopolymerization kinetics, and morphologies of difunctional urethane acrylate-based PDLC systems were investigated using new transparent conducting electrodes. A PDLC cell photo-cured using UV at an intensity of 2.0 mW/c㎡ with a 15 ㎛-thick PDLC layer showed outstanding off-state opacity, good on-state transmittance, and favorable driving voltage. Also, the PDLC-based smart window optimized in this study formed liquid crystal droplets with a favorable microstructure, having an average size range of 2~5 ㎛ for scattering light efficiently, which could contribute to its superior final performance.

The Study of Thermal Effect Suppression and Wavelength Dependence of Azobenzene-coated FBG for UV Sensing Application (UV광 측정용 아조벤젠 코팅된 FBG의 열적 효과 제거 및 파장 의존성에 대한 연구)

  • Choi, Dong-Seok;Kim, Hyun-Kyoung;Ahn, Tae-Jung
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.2
    • /
    • pp.67-71
    • /
    • 2011
  • In the paper, we have demonstrated an azobenzene-coated fiber Bragg grating (FBG) for monitoring ultraviolet light (UV) intensity in remote measurement. The elasticity of the coated azobenzene polymer is changed by the UV light, which induces a center wavelength change corresponding to the change of the FBG's grating period. The wavelength shift resulting from both UV light and other light with the wavelength out of the UV range was about 0.18 nm. In order to improve the accuracy of the measurement, the center wavelength shift caused by radiant heat of the light source was sufficiently removed by using a thermal filter. The amount of the center wavelength shift was consequently reduced to 0.06 nm, compared to the result without the thermal filter. Also, the FBGs coated by using azobenzene polymer were produced by two different methods; thermal casting and UV curing. Considering temperature dependence, UV curing is more suitable than thermal casting in UV sensor application of the azobenzene-coated FBG. In addition, we have confirmed the wavelength dependence of the optical sensor by means of four different band pass filters. Thus, we found out that the center wavelength shift per unit intensity is 0.029 [arb. unit] as a maximum value at 370 nm wavelength region and that the absorption spectrum of the azobenzene polymer was very consistent with the wavelength dependence of the azobenzene-coated FBG.

The Photoluminance Properties of Blue Phosphor with Chemical Composition in BaO-MgO-$Al_2O_3$ System (BaO-MgO-$Al_2O_3$계에서 조성변화에 따른 청색 형광체의 발광특성)

  • Park, Sang-Hyun;Kong, Myung-Sun;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.520-525
    • /
    • 1998
  • The optical properties with chemical composition change in BaO- MgO-$AI_2O_3$, system activated by divalent Eu ion were investigated under 254nm ultraviolet(UV) and 147nm vacuum ultraviolet(VUV). These phosphors emitted a blue light at a dominant wavelength of $\lambda$=445nm under UV and VUV irradiations. It was found that the brightness of $BaMgAI_{14}O_{23}$ phosphor increased with Eu concentration up to 10% under UV but it showed a maximum emitting intensity at 5% Eu for VUV. The emitting intensity of blue color of $BaMgAl_{10}O_{l7}$ phosphor was higher than that of $BaMgAI_{14}O_{23}$for both excitation. A further improvement in brightness was obtained for $Ba_{o.9}Ca_{0.1}MaAl_{14}O_{23}$ and $Ba_{0.9}Sr_{0.1}MgAl_{10}O_{17}$ phosphor synthesized by the substition of $Ba^{+2}$ ion with O.lmole of $Ca^{+2}$ or $Sr^{+2}$ ions in $BaMgAl_{IO}O_{17}$: Eu phosphor.

  • PDF

Characteristics of Halophosphate Phosphor for Long-wavelength UV Prepared by Spray Pyrolysis (분무열분해법에 의해 합성된 장파장 자외선용 할로포스페이트계 형광체의 특성)

  • Sohn, Jong-Rak;Kang, Yun-Chan;Park, Hee-Dong;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.555-559
    • /
    • 2002
  • Blue-emitting $Sr_{10}$($PO$)$_{6}$ $Cl_2$:$Eu^{2+}$ and $_{(Sr,Mg) }$ 10/($PO_4$)$_{6}$ $Cl_2$:$Eu^{2+}$ phosphor particles for application of long-wavelength UV LED were prepared by ultrasonic spray pyrolysis. The luminescence characteristics under long- wave-length ultraviolet of the $Sr_{10}$ ($PO_4$)$_{6}$ $Cl_2$:$Eu^{2+}$ and (Sr,Mg)$_{10}$ ($PO_4$)$_{6}$ $Cl_2$:$^Eu{2+}$ phosphor particles prepared by the spray pyrolysis were compared with that of the commercial product. The PL intensity of the $Sr_{10}$ ($PO_4$)$_{6}$ $Cl_2$:$Eu^{2+}$ particles prepared by the spray pyrolysis was lower than that of the commercial $Sr_{10}$ ($PO_4$)$_{6}$ $Cl_2$:$Eu^{2+}$ particles because prepared $Sr_{10}$ ($PO_4$)$_{6}$ $Cl_2$:$Eu^{2+}$ phosphor particles had porous structure and hollow morphology. However, the PL intensity of the (Sr,Mg)$_{10}$($PO_4$)$_{6}$ $Cl_2$:$Eu^{2+}$ phosphor particles prepared by the spray pyrolysis was 8% higher than that of the commercial one. The high brightness of $(Sr,Mg)_{10}$ ($PO_4$)$_{6}$ $Cl_2$:Eu$^{2+}$ phosphor particles prepared by spray pyrolysis is due to the dense structure and high crystallinity of particles. The TEX>$(Sr,Mg)<_{10}$ ($PO_4$)$_{6}$ /$Cl_2$:$Eu^{ 2+}$ phosphor particles had main emission peak t 448 nm under long- wavelength ultraviolet.

Spectroscopic Comparison of Photo-oxidation of Outside and Inside of Hair by UVB Irradiation (자외선B 조사에 의한 모발 외부와 내부의 광산화에 관한 분광학적 비교)

  • Ha, Byung-Jo
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.220-225
    • /
    • 2020
  • Hair is made of proteins containing various amino acids. Ultraviolet (UV) radiation is believed to be responsible for the most damaging effects of sunlight, and also plays an important role in hair aging. The purpose of this study was to investigate the changes in morphological and chemical structures after ultraviolet B (UVB) irradiation of human hair. The UVB-irradiated hair showed characteristic morphological and structural changes, compared to those of the normal hair. The result from a scanning electron microscope (SEM) equipped with an energy dispersive X-ray diffractometer (EDX) showed that the scale of UV-irradiated hair appeared to be rough and the amount of oxygen element was higher than that of the normal hair. Fluorescence and three dimensional (3D) topographical images were obtained by a confocal laser scanning microscope (CLSM). In 3D images, the green emission intensity of normal hair was much higher than that of fluorescing UVB-irradiated hair. The intensity of green emission reflects the intrinsic fluorescence of hair protein. Also, a fluorescent imaging method using fluorescamine reagent was used to identify the free amino groups resulting from a peptide bond breakage in UVB-irradiated hair. Strong blue fluorescence of UVB-irradiated hair, which indicates a very high level of amino groups, was observed by CLSM. Therefore, the fluorescamine as an extrinsic fluorescence could provide a useful tool to identify the peptide bond breakage in UVB-irradiated hair. Infrared image mapping was also employed to assess the cross-sections of normal and UVB-irradiated specimens to examine the oxidation of disulfide bonds. The degree of peak areas with strong absorbance for the disulfide mono-oxide was spread from the outside to the inside of hair. The spectroscopic techniques used alone, or in combination, launch new possibilities in the field of hair cosmetics.

Inhibitory Effect of PME88 MelonSOD on the Ultraviolet-Induced Photo-aging (PME88 멜론SOD의 자외선으로 인한 피부 광노화 억제 효과)

  • Cho, Se-Haeng
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.4
    • /
    • pp.401-408
    • /
    • 2009
  • PME88 (gliadin-combined) melon superoxide dismutase (SOD) is known to promote the production of the body‘s own natural antioxidants including superoxide dismutase, catalase and glutathione peroxidase. In this study, we investigated the inhibitory effects of PME88 melonSOD on the ultraviolet-induced photo-aging by the evolution of minimal erythemal dose (MED), erythema quotation and spectrocolorimetric measurements of erythema. The analysis of the evolution of the MED showed a significant increase 28 days after the daily taken of the PME88 melonSOD. The analysis of the erythema quotation showed that on D29, for the dose 1.25 MED, erythema intensity is significantly higher for placebo group than for PME88 melonSOD group. At doses 0.64 MED$_{D14}$, 0.80 MED$_{D14}$ and 1 MED$_{D14}$ the value of parameter $a^*$ (the most sensitive to the colour changes bound to the variations of blood flow. It permits to assess the evolution of erythema) is significantly higher for placebo group. No significant difference has been observed between groups (PME88 melonSOD and placebo) on the evolution of the number and consistency of feces after 4 weeks of treatment. No intolerance has been observed during the 4 weeks of treatment. These results mean that PME88 melonSOD as a dietary supplement could be useful to attenuate ultraviolet-induced skin photo-aging.

Improvement in Light Extraction Efficiency of 380 nm UV-LED Using Nano-patterned n-type Gan Substrate (나노 구조의 패턴을 갖는 n-type GaN 기판을 이용한 380 nm UV-LED의 광 추출 효율 개선)

  • Baek, Kwang-Sun;Jo, Min-Sung;Lee, Young-Gon;Sadasivam, Karthikeyan Giri;Song, Young-Ho;Kim, Seung-Hwan;Kim, Jae-Kwan;Jeon, Seong-Ran;Lee, June-Key
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.273-276
    • /
    • 2011
  • Ultraviolet (UV) light emitting diodes (LEDs) were grown on a patterned n-type GaN substrate (PNS) with 200 nm silicon-di-oxide (SiO2) nano pattern diameter to improve the light output efficiency of the diodes. Wet etched self assembled indium tin oxide (ITO) nano clusters serve as a dry etching mask for converting the SiO2 layer grown on the n-GaN template into SiO2 nano patterns by inductively coupled plasma etching. PNS is obtained by n-GaN regrowth on the SiO2 nano patterns and UV-LEDs were fabricated using PNS as a template. Two UV-LEDs, a reference LED without PNS and a 200 nm PNS UV-LEDs were fabricated. Scanning Electron microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Photoluminescence (PL) and Light output intensity- Input current- Voltage (L-I-V) characteristics were used to evaluate the ITO-$SiO_2$ nanopattern surface morphology, threading dislocation propagation, PNS crystalline property, PNS optical property and UVLED device performance respectively. The light out put intensity was enhanced by 1.6times@100mA for the LED grown on PNS compared to the reference LED with out PNS.

Preparation of Ba2Mg(PO4)2:Eu Phosphors and Their Photoluminescence Properties Under UV Excitation (Ba2Mg(PO4)2:Eu 형광체의 합성과 자외선 여기하의 발광특성)

  • Tae, Se-Won;Jung, Ha-Kyun;Choi, Sung-Ho;Hur, Nam-Hwi
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.623-627
    • /
    • 2008
  • For possible applications as luminescent materials for white-light emission using UV-LEDs, $Ba_2Mg(PO_4)_2:Eu^{2+}$ phosphors were prepared by a solid state reaction. The photoluminescence properties of the phosphor were investigated under ultraviolet ray (UV) excitation. The prepared phosphor powders were characterized to from a single phase of a monoclinic crystalline structure by a powder X-ray diffraction analysis. In the photoluminescence spectra, the $Ba_2Mg(PO_4)_2:Eu^{2+}$ phosphor showed an intense emission band centered at the 584 nm wavelength due to the f-d transition of the $Eu^{2+}$ activator. The optimum concentration of $Eu^{2+}$ activator in the $Ba_2Mg(PO_4)_2$ host, indicating the maximum emission intensity under the excitation of a 395 nm wavelength, was 5 at%. In addition, it was confirmed that the $Eu^{2+}$ ions are substituted at both $Ba^{2+}$ sites in the $Ba_2Mg(PO_4)_2$ crystal. On the other hand, the critical distance of energy transfer between $Eu^{2+}$ ions in the $Ba_2Mg(PO_4)_2$ host was evaluated to be approximately 19.3 A. With increasing temperature, the emission intensity of the $Ba_2Mg(PO_4)_2$:Eu phosphor was considerably decreased and the central wavelength of the emission peak was shifted toward a short wavelength.

Influence of Deposition Pressure on Structural and Optical Properties of SnS Thin Films Grown by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 성장 된 SnS 박막의 구조적 및 광학적 특성에 대한 증착 압력의 영향)

  • Son, Seung-Ik;Lee, Sang Woon;Son, Chang Sik;Hwang, Donghyun
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2020
  • Single-phased SnS thin films have been prepared by RF magnetron sputtering at various deposition pressures. The effect of deposition pressure on the structural and optical properties of polycrystalline SnS thin films was studied using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible-near infrared (UV-Vis-NIR) spectrophotometer. The XRD analysis revealed the orthorhombic structure of the SnS thin films oriented along the (111) plane direction. As the deposition pressure was increased from 5 mTorr to 15 mTorr, the intensity of the peak on the (111) plane increased, and the intensity decreased under the condition of 20 mTorr. The binding energy difference at the Sn 3d5/2 and S 2p3/2 core levels was about 324.5 eV, indicating that the SnS thin film was prepared as a pure Sn-S phase. The optical properties of the SnS thin films indicate the presence of direct allowed transitions with corresponding energy band gap in the rang 1.47-1.57 eV.