• Title/Summary/Keyword: Ultraviolet absorbers

Search Result 7, Processing Time 0.018 seconds

A Study on UV-CUT Processing (자외선 침투 방지용 직물의 개발)

  • 김삼수;김성동;조규민
    • Textile Coloration and Finishing
    • /
    • v.6 no.3
    • /
    • pp.52-59
    • /
    • 1994
  • Polyester, polyester/cotton blend, nylon and cotton fabrics were ultraviolet cutting finished with padding method or exhaustion method using several UV absorbers. The transmittance of ultraviolet ray in the textiles can be greatly depressed by the processing and it is expected that human skin can be kept safe from sun-burn or damages by ultraviolet ray.

  • PDF

UV Blocking Coatings by Combination of Organic-inorganic Hybrid Materials and UV absorbers (유-무기 하이브리드 재료와 자외선 흡수제의 배합에 의한 자외선 차단 코팅)

  • Yu, Dong-Sik;Lee, Ji-Ho;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1296-1301
    • /
    • 2006
  • The human eye is exposed to UV and visible light. UV light exposure becomes harmful to the eye. Protection for eyes should block all ultraviolet rays. In our study, organic-inorganic hybrid materials have been applied to UV blocking coatings with UV absorbing materials on transparent plastics. The optical properties of UV blocking coatings were investigated in PMMA, CR 39 and PC substrates. In case of all UV absorbers, the transmission of UV light decreases with an increased amount of absorber. Our findings indicate that PMMA significantly reduced the transmission of UV radiation, CR 39 showed moderate decrease, while UV-uncoated PC had some UV blocking properties. Adhesion, hot water resistance and chemical resistance of the UV-coated CR 39 lenses were good. Pencil hardness were 4H. Abrasion resistance were poor.

  • PDF

A Study on the Ultraviolet(UV)-Cut Fiber (자외선 차단 직물에 환한 연구)

  • 최인려
    • The Research Journal of the Costume Culture
    • /
    • v.11 no.6
    • /
    • pp.967-971
    • /
    • 2003
  • As the concerns over health increased in 1990's, research and development on the health material were also activated. The development of UV-cut textile became the hot issue, because the damage of W irradiation due to ozone depletion has become widely known. UV-cut effect is determined by the material, the color, the organization and the density of UV-cut fibers. UV-cut effect is very different according to the fibers. Polyester is known to have a better effect. Even in the same textile material, staple fiber has more effect than filament fiber. Different colors have different offsets. Although textiles have the same color, the effects can be different according to the depth of color. PET, PET/cotton blend, nylon and cotton fabrics were ultraviolet cutting finished with padding method using several absorbers. These UV-cut effect can be improved through the processing. Safety of UV-cut textile for the body must be considered future, Until now the figure of the UV-cut effects has been emphasized. There has been no experiment on the human body, although the textiles are directly on the human body. Futhermore there os no safety standard of UV-cut textiles. Therefore every effort will be made to set the standard UV-cut processing is established. The need of UV-cut products will be known to the consumers.

  • PDF

Simultaneous Determination of UV Absorbers Migrated from Polyethylene and Polypropylene Food Packaging Materials into Food Simulants by HPLC-UVD (HPLC-UVD를 이용한 폴리에틸렌, 폴리프로필렌 기구 및 용기·포장 유래 자외선흡수제 동시분석법)

  • Choi, Heeju;Choi, Jae Chun;Bae, In-Ae;Lee, Chanyong;Park, Se-Jong;Kim, MeeKyung
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.5
    • /
    • pp.434-442
    • /
    • 2017
  • The UV light in sunlight breaks down the chemical bonds in a polyolefin polymer through a process called photodegradation, ultimately causing cracking, chalking, colour changes, and loss of physical properties such as impact strength, tensile strength, elongation, and others. UV absorbers are used to prevent or terminate the oxidation of plastics by UV light. They are receptive to UV radiation and dissipate the energy harmlessly as heat. Benzotriazoles and benzophenones are used mainly in polyolefins such as polyethylene and polypropylene. In this study, we have developed a method for the analysis of 12 UV absorbers, which are Uvinul 3000, Cyasorb UV 24, Uvinul 3040, Tinuvin 312 and P, Seesorb 202, Chimassorb 81, Tinuvin 329, 234, 326, 328 and 327, migrated from the food packaging materials into four food simulants for aqueous, acidic, alcoholic and fatty foods. The UV absorbers in food simulants were determined by reversed-phase high performance liquid chromatograph-ultraviolet detector with 310 nm after solid-phase extraction with a hydrophilic-lipophilic balance (HLB) cartridge or dilution with isopropanol. The analytical method showed a good linearity of coefficient ($R^2{\geq}0.99$), limits of detection (0.049~0.370 mg/L), and limits of quantification (0.149~1.120 mg/L). The recoveries of UV absorbers spiked to four food simulants ranged from 70.05% to 110.13%. The developed method would be used as a reliable tool to determine concentrations of the migrated UV absorbers.

p-Coumaric Acid Attenuates UVB-Induced Release of Stratifin from Keratinocytes and Indirectly Regulates Matrix Metalloproteinase 1 Release from Fibroblasts

  • Seok, Jin Kyung;Boo, Yong Chool
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.241-247
    • /
    • 2015
  • Ultraviolet (UV) radiation-induced loss of dermal extracellular matrix is associated with skin photoaging. Recent studies demonstrated that keratinocyte-releasable stratifin (SFN) plays a critical role in skin collagen metabolism by inducing matrix metalloproteinase 1 (MMP1) expression in target fibroblasts. In the present study, we examined whether SFN released from UVB-irradiated epidermal keratinocytes increases MMP1 release from dermal fibroblasts, and whether these events are affected by p-coumaric acid (p-CA), a natural phenolic compound with UVB-shielding and antioxidant properties. HaCaT cells were exposed to UVB in the absence and presence of p-CA, and the conditioned medium was used to stimulate fibroblasts in medium transfer experiments. The cells and media were analyzed to determine the expressions/releases of SFN and MMP1. UVB exposure increased SFN release from keratinocytes into the medium. The conditioned medium of UVB-irradiated keratinocytes increased MMP1 release from fibroblasts. The depletion of SFN using a siRNA rendered the conditioned medium of UVB-irradiated keratinocytes ineffective at stimulating fibroblasts to release MMP1. p-CA mitigated UVB-induced SFN expression in keratinocytes, and attenuated the MMP1 release by fibroblasts in medium transfer experiments. In conclusion, the present study demonstrated that the use of UV absorbers such as p-CA would reduce UV-induced SFN-centered signaling events involved in skin photoaging.

A Comprehensive Study for Two Damage Sites of Human Hair upon UV-B Damage

  • Song, Sang-Hun;Son, Seongkil;Kang, Nae Gyu
    • Korea Journal of Cosmetic Science
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Protection mechanisms for skin damage of ultraviolet (UV) absorbers in personal care products for protection against UV are well studied, but not for hair protection. The purpose of this study is to describe and compare the changes of physical property produced in human hair by doses of the UV-B exposure causing protein degradation. To observe the change of physical properties in hair, the experimental intensity of UV-B exposure has been established on the basis of statistical data from official meterological administration as daily one hour sunlight exposure for two weeks. Polysilicone-15, ethylhexyl methoxycinnamate (OMC), and octocrylene were employed for UV-B absorber, and those were treated to hair swatch by rubbing wash through shampoo and conditioner. Bending rigidity displayed kinetically successive reduction at high doses of UV exposure up to the 8,000 s, and exhibited different level at each sample of UV-B absorber. However, the values of Bossa Nova Technologies (BNT) for shinning factor were already saturable at the 2,000 s exposure except that treated with polysilicone-15. The differential scanning calorimetry (DSC) to measure a strength of inner protein produces a successive reduction of enthalpy as like a reduction of bending rigidity upon UV exposure. Surface roughness from lateral force microscope (LFM) acquired immediately after UV exposure show a saturable frictional voltage which has been also found in a saturable BNT data as the time of UV exposure increases. Through researching the DSC and the LFM, shinning of hair was much correlated to the protein damage at the surface, and bending rigidity could be regulated by the protein structural damage inside hair. Therefore, the optimization of efficient strategy for simultaneous prevention of hair protein on the surface and internal hair was required to maintain physical properties against UV.