• Title/Summary/Keyword: Ultrastructural changes

Search Result 340, Processing Time 0.024 seconds

AN EXPERIMENTAL STUDY OF THE IRRADIATION EFFECTS ON THE CAPILLARY AND ENDOTHEILIAL CELL OF THE RAT SUBMANDIBULAR GLAND (방사선조사가 악하선 미세혈관과 내피세포에 미치는 영향에 관한 실험적 연구)

  • Yoo Young-Ah;Sohn Jeong-Ick;Choi Mi;Bae Yong-Chul;Choi Karp-Shik
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.24 no.1
    • /
    • pp.67-77
    • /
    • 1994
  • The purpose of this study was to investigate the irradiatiion effects on the capillary and endothelial cell in the submandibular gland. Sprague-Dawley strain male rats were singly irradiated to their neck region with the dose of 5Gy by 6MV X-irradiation and sacrificed on the 6 hours, 12 hours, 1, 3, 7, and 14days after irradiation. The authors observed the histological changes of the capillary at H & E and PAS staining under a light microscope, and also observed the ultrastructural changes of the endothelial cell using a transmission electron microscope. The obtaining results were as follows: 1. In the light microscopic examination, the capillary density was slightly increased on the 1day after irradiation, and increased until the 7 days after irradiatiion. After then, capillary density was apparently decreased. 2. The reaction to PAS staining at acinar cells was decreased on the 6 hours after irradiation, and recovered on the 7days after irradiation. But reaction was decreased on the 14days after irradiation agan, after then, gradually recovered with days. 3. In the transmission electron microscopic examination, mild proliferation of cytoplasmic process of the endothelial cell and reduction in luminal size were observed just after irradiation. After then, nuclear degeneration, marked proliferation of cytoplasmic process, thickened basal lamina, and numerous cytoplasmic vesicles were observed on the 1day after irradiation. These changes were recovered to normal on the 14days after 5Gy group, but not with 10Gy irradiation group. And destruction of endothelial cell and loss of basal lamina were not observed in both groups. 4. From the above results, reduction in luminal size, proliferation of cytoplasmic process and thickening of basal lamina were observed as the irradiation effects on the capillary and endothelial cell of the submandibular gland. And also, these changes may induce increase in capillary number and endothelial permeability by means of increase of cytoplasmic vesicle formation. The changes appeared earlier and more prominent in 10Gy irradiated group than in 5Gy irradiated group.

  • PDF

CHANGES IN THE SHAPE AND ULTRASTRUCTURE OF THE ARTICULAR DISC OF THE RAT MANDIBULAR JOINT WITH AGING (가령에 따른 백서 악관절 원판의 형태 및 미세구조적 변화)

  • Suh, Hye-Kyung;Kyung, Hee-Moon;Sung, Jae-Hyun;Bae, Yong-Chul
    • The korean journal of orthodontics
    • /
    • v.24 no.2
    • /
    • pp.331-348
    • /
    • 1994
  • The purpose of this study was to investigate changes in the shape and ultrastructure of the articular disc of the rat mandibular joint with aging. Mechanical stress applied to the articular disc changes during neonatal, suckling, juvenile, adult and senile stages. Mandibular joints of 6 groups of rats(1-, 7-, 17-, 27-, 55-day and over-1-year groups) were removed en bloc and processed for light and electro microscopic study. The changes in the shape of articular disc were examined by light microscope in each group. Structural and ultrastructural changes in the articular disc were examined by light and electron microscope in each group. The results were as follows : In the 1-day and 7-day groups, the articular disc was long and slender in shape and the articular disc was not fitted with the shape of the mandibular fossa and condyle. However' after that time, the anterior and posterior portions of the articular disc were more bulged and the middle portion was shorter and biconcave. Thus the articular disc was well fitted with the shape of the mandibular fossa and condyle. The cell density decreased with aging. In the l -day and 7-day groups, the Golgi apparatus, rough endoplasmic reticulum and free ribosome, which are involved in the synthesis of intracellular and extracellular matrix, were developed. In the 17-day, 27-day and 55-day groups, not only the cell organelles involved in the synthesis of the intracellular and extracellular matrix but also the cell organelles involved in the remodeling of the extracellular matrix(i.e., finger-like cell process, lysosome and mitochondria)were well developed. With advancing age, intracytoplasmic microfilaments were more accumulated and condroid cells increased. In the over-1-year group, the majority of cells of the articular disc were chondroid cells. The majority of cytoplasmic compartment were filled with intracytoplasmic microfilaments and cell organelles were not developed. Therefore, metabolic activities of the cell was markedly reduced and cells contained structures enduring mechanical stress, and cells which were in the process of degeneration were observed occasionally.

  • PDF

Effects of puromycin aminonucleoside on the cytoskeletal changes of glomerular epithelial cells (Puromycin aminonucleoside의 사구체 상피세포에 대한 영향)

  • Lee, Jun Ho;Ha, Tae Sun
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.1
    • /
    • pp.54-61
    • /
    • 2008
  • Purpose : This study was designed to clarify the mechanism of proteinuria in nephrotic syndrome patients by using puromycin aminonucleoside (PAN) nephrosis model. Methods : Following administration of various concentrations of PAN and antioxidants we observed the changes of podocyte cytoskeletons in cultured rat glomerular epithelial cells (GEpC) by method of scanning electron microscope, reactive oxyten species (ROS) analysis, permeability assay, confocal microscope, and Western blot assay. Results : PAN not only induced the ultrastructural changes of GEpC, such as shortening and fusion of microvilli, but also separated the intercellular gaps and linear ZO-1. PAN induced oxidative stresses in time and dose dependent manners and increases of intercellular permeability in anti-oxidants inhibitable manners. High concentration of PAN induced not only actin polymerization and disorganization, but also the conglomerulation and internal dislocation of ${\alpha}-actinin$ protein. The intensities of fluorescences of ZO-1 protein were diminished and internalized by PAN in a dose-dependent manner, which were inhibited by anti anti-oxidants. Conclusion : PAN induced the changes of podocytes cytoskeleton and junctional barriers by way of increasing ROS in GEpC that resulted in increasing their permeability in a antioxidatn-inhibitable manner. Glomerular hyperpermeability induced by PAN mediateing through oxidative stresses is thought to take part in the mechanism of proteinuria in nephrotic syndrome.

Effects of Gemifloxacin on Achilles Tendon in Immature Rats (Gemifloxacin이 미성숙 랫드의 아킬레스건에 미치는 영향)

  • Bae, Jin-Gye;Kim, Young-Soo;Kim, Se-Eun;Shim, Kyung-Mi;Kang, Seong-Soo;Cho, Ik-Hyun;Lee, Soo-Han;Park, Chang-Hyun;Uhm, Chang-Sub;Jeong, Moon-Jin;Han, Song-Iy;Lim, Sung-Chul;Bae, Chun-Sik
    • Applied Microscopy
    • /
    • v.36 no.2
    • /
    • pp.93-99
    • /
    • 2006
  • Gemifloxacin is a synthetic fluoroquinolone antimicrobial agent that exhibits potent activity against most Gram-negative and Gram-positive organisms, and has a comparatively low chondrotoxic potential in immature animals. This study examined the effects of gemifloxacin on the Achilles tendons in immature Sprague-Dawley rats treated by oral intubation once daily for 5 consecutive days from postnatal week 4 onward at doses of 0 (vehicle), and 600mg/kg body weight Ofloxacin was used for comparison. The Achilles tendon sperimens were examined by electron microscopy. In comparison with the vehicle-treated controls, there were ultrastructural changes in all samples from the gemifloxacin- and ofloxacin-treated rats. Degenerative changes were observed in the tenocytes, and the cells that detached from the extracellular matrix were recognizable. The degree of degenerative changes and the number of degenerated cells in the Achilles tendon were significantly higher in the treated group than in the control group. Moreover, among the quinolone treated groups, these findings were more significant in the ofloxacin treated group, and less significant in the gemifloxacin treated group. It is unclear what these findings mean with respect to the possible risk ill juvenile patients treated with gemifloxacin or other quinolones. However, these results show that gemifloxacin causes fewer changes in the connective tissue structures.

The Effect of Drinking Water Fluoride on the Fine Structure of the Ameloblast in the Fetal Rat (음용수 불소가 흰쥐태아 법랑모세포의 미세구조에 미치는 영향)

  • Lim, Do-Seon;Jeong, Moon-Jin;Yoe, Sung-Moon
    • Applied Microscopy
    • /
    • v.29 no.2
    • /
    • pp.189-193
    • /
    • 1999
  • The response of ameloblast to long term (3 weeks) exposure to fluoride was examined in continuously erupting mandibular incisors of pregnancy rats as compared to control rats receiving a similar diet (Teklad L-356) but no sodium fluoride in there drinking water. Rats were started on water containing 0 ppm, 100 ppm, 200 ppm, and 300 ppm NaF at the beginning of pregnancy. To examine on the ultrastructural changes of the ameloblast, electron microscopy was used. The results indicated that rat incisors expressed two major changes in normal amelogenesis that could be attributed to chronic fluoride treatment. The fluoride produces marked alteration in the fine structure of ameloblast from teeth of young rats, such as large confluent distensions of the endoplasmic reticulum and swelling of isolated mitochondria, in particular on the morphology of the rough-surfaced endoplasmic reticulum. A graded series of alterations to these organelles were produced, and the severity of the changes would seem to be dependent on dose and time. This experimental data suggested that exposure prolonged of animal to high level of fluoride appears to induce morphological changes in the normal appositional growth and initial mineralization of enamel created during amelogenesis.

  • PDF

Effects of cyclopiazonic acid and aflatoxin B1 on arachidonic acid metabolism, calcium mobilization and ultrastructure in rabbit platelet aggregation (Cyclopiazonic acid 및 aflatoxin B1이 토끼의 혈소판에서 arachidonic acid 대사, 칼슘 동원 및 초미세구조에 미치는 영향)

  • Hong, Choong-man;Jang, Dong-deuk;Cho, Myung-haing
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.4
    • /
    • pp.873-886
    • /
    • 1996
  • For better understanding the interrelationship of hemorrhage and aggregation mechanism, cyclopiazonic acid(CPA) known as promoting the aggregation of platelet, aflatoxin $B_1(AFB_1)$ inhibiting platelet aggregation were used as toxic mycotoxins in these studies. In order to investigate the potential role of prostaglandin metabolism on the platelet aggregation, a variety of prostaglandin metabolites such as $PGF_{2{\alpha}}$, $PGE_2$ and $TXB_2$ were measured in homogenized rabbit platelets by TLC and LSC. And the role of $Ca^{{+}{+}}$ on the platelet aggregation was investigated by flow cytometer. Finally, the morphological effects of mycotoxins on platelet were determined by transmission electron microscope. The results and conclusions obtained from these studies are: 1) CPA induced no changes but $AFB_1$ increased $PGE_2$ and $TXB_2$. 2) CPA promoted ADP, collagen, thrombin, A.A., and PAF-induced $Ca^{{+}{+}}$ release. $AFB_1$, however, decreased $Ca^{{+}{+}}$ level except collagen-induced $Ca^{{+}{+}}$ release. When the calcium blocker, verapamil, was used, CPA decreased thrombin-induced $Ca^{{+}{+}}$ release and increased collagen, ADP, PAF and A.A.-induced $Ca^{{+}{+}}$ release. $AFB_1$ in contrast decreased the all factors induced $Ca^{{+}{+}}$ release. 3) $AFB_1$ did not induce any ultrastructural changes except large vacuole formation in a few platelets. And CPA also did not induce any changes except moderate shape change, indicator of platelet activation. In conclusion, CPA promoted platelet aggregation by the increases of $Ca^{{+}{+}}$ release but had no changes in A.A. metabolites. Antiaggregating effects of $AFB_1$ may be due to decreases of $Ca^{{+}{+}}$ release and increases of $PGE_2$ and $PGF_{2{\alpha}}$ formation. These data provide the basis for the future study of mobilization and function of $Ca^{{+}{+}}$ in platelet aggregation.

  • PDF

Superiority of Modifiled University of Wiscinsin Solution in the Prolonged Preservation of Isolated Rat Heart (적출 쥐 심장의 장시간 보존에 있어서 University of Wisconsin 수정 용액의 우수성)

  • Lee, Jae-Seong;Kim, Song-Myeong;Kim, Gyu-Tae
    • Journal of Chest Surgery
    • /
    • v.26 no.6
    • /
    • pp.427-440
    • /
    • 1993
  • The paucity of donor hearts for transplantation can be remedied by distant heart procurement. Prolonging donor heart preservation is essential for successful clinical cardiac transplantation. Thirty-two isolated rat hearts were perfused with Krebs-Henseleit buffer solution for 15 minutes, arrested and preserved at 4 oC for 4 hours, and then reperfused for 25 minutes. The following three groups were prepared and hemodynamic changes, creatine kinase-MB isoenzyme levels and ultrastructural changes of the myocardium were analysed before and after cardiac arrest. ; Group I : the heart was arrested with the cardioplegic solution [Plegisol, potassium : 16 mM, sodium : 120 mM] and then stored in a solution with ionic compositions of the extracellular fluid [Hartman, potassium : 4 mM, sodium : 130 mM] ; Group II : the heart was arrested with the cardioplegic solution and stored in a solution with ionic compositions of the intracellular fluid [Modified Euro-Collins, potassium : 108 mM, sodium : 10 mM] ; Group III : the heart was arrested with the cardioplegic solution containing adenosine 20 uM, and then stored in a solution with ionic compositions of the intracellular fluid [Modified University of Wisconsin solution, potassium : 119 mM, sodium: 23 mM]. Left ventricular developed pressure at 20 minutes of the reperfusion was significantly higher in group III [64.3 $\pm$ 3.12 mmHg, p<0.01] and group II [58.3 $\pm$ 1.55 mmHg, p<0.05] as compared with group I [51.4$\pm$ 2.78 mmHg]. The time to induce cardiac arrest after infusion of cardioplegic solution with adenosine 20 uM [5.3 $\pm$ 0.30 second, p<0.005] was significantly shorter than without adenosine [10.6$\pm$ 0.55 second]. Coronary flow at 20 minutes of the reperfusion was augmented significantly in group III [9.6$\pm$ 0.50 ml/min, p<0.05, p<0.05] as compared with group I [8.0 $\pm$ 0.41 ml/min] and group II [8.1$\pm$ 0.51 ml/min]. Percentage recovery of left ventricular developed pressure at 20 minutes of the reperfusion was significantly higher in group III [94.6$\pm$ 2.51 %, p<0.005] as compared with group II and in group II [83.1 $\pm$ 1.22 %, p<0.005] as compared with group I [69.9 $\pm$ 1.73 %], and also percentage recovery of coronary flow at 20 minutes of the reperfusion was significantly higher in group III [82.3 $\pm$ 3.86 %, p<0.05] as compared with group II [71.4 $\pm$ 3.46 %] but there was no significant difference between group I and group II. Measured level of creatine kinase-MB isoenzyme at 15 minutes of the reperfusion was significantly lower in group III [1.23 $\pm$ 0.16 ng/ml, p<0.025] and group II [1.42$\pm$ 0.10 ng/ml, p<0.05] as compared with group I [1.79 0.14 ng/ml]. In the semiquantitative evaluation of the ultrastructural changes of the myocardium, mitochondrial score was lower in group III [0.7 $\pm$ 0.21] than in group I [3.1$\pm$ 0.28] and group II [1.7 $\pm$ 0.19], and also the other structural score was lower in group III [2.7$\pm$ 0.99] than in group I [7.9 $\pm$ 0.89] and group II [5.0 $\pm$ 1.22]. In conclusion, the solution with ionic compositions of the intracellular fluid is appropriate for prolonged cardiac preservation, and it appears to be better preserving method for distant procurement when the donor heart is rapidly arrested with cardioplegic solution containing adenosine 20 uM, and then stored with Modified University of Wisconsin solution.

  • PDF

Comparison of Cardioprotection between Histidine-Tryptophan-Ketoglutarate Cardioplegia and DelNido Cardioplegia in Isolated Rat Hearts (흰쥐의 적출심장에서 HTK 심정지액과 DelNido 심정지액의 심근보호효과비교)

  • 공준혁;김대현;장봉현
    • Journal of Chest Surgery
    • /
    • v.36 no.11
    • /
    • pp.799-811
    • /
    • 2003
  • Background: The aim of this study is to define the cardioprotective effects (hemodynamic, cytochemical and ultrastructural of the newly developed Histidine-Tryptophan-Ketoglutarate (HTK) cardioplegia compared to DelNido cardioplegia. Material and Method: Seventy-nine isolated rat hearts were divided into three groups on the basis of techniques of cardioplegia infusion. Twenty-eight hearts (Group 1) were flushed with cold DelNido cardioplegia with every 40 minutes for 2 hours. Twenty-seven hearts (Group 2) were flushed with cold HTK cardioplegia for once during the 2 hours. Twenty-four hearts (Group 3) were flushed with cold HTK cardioplegia with every 40 minutes for 2 hours. Heart rate, left ventricular developed pressure (LVDP), changes of + dp/dt max, coronary flow, and rate-pressure product value were measured at pre-ischemic, post-reperfusion 15 minutes, 30 minutes, and 45 minutes for hemodynamic study. Aspartate aminotransferase (AST), lactate dehydrogenase (LD), creatine kinase (CK), CK-MB, troponin-I, myoglobin, and lactate were measured at pre-ischemic and post-reperfusion 45 minutes for cytochemical parameters. Mitochondrial scores were counted in 3 cases from each group for ultrastructural assessment. Result: In hemodynamic study, there were no significant differences among group 1, group 2, and group 3. However, the decrease values of heart rate in group 2 and 3 exhibited significantly lower values than in group 1. In cytochemical study, there were no significant differences among group 1, group 2, and group 3. However, the increase values of lactate in group 2 and 3 exhibited significantly lower values than in group 1. In ultrastructural assessment, the mean myocardial mitochondria scores in group 1, group 2, and group 3 were 2.14$\pm$0.10, 1.52$\pm$0.57, and 2.10$\pm$0.16. Conclusion: HTK solution provides adequate myocardial protection with some advantages over DelNido solution in isolated rat hearts.

A Study on the Ultrastructural Changes of Cardiac Muscle in Dichlorvos Treated Albino Rat (Dichlorvos가 흰쥐 심근의 미세구조에 미치는 영향)

  • Baik, Tai-Kyoung;Lee, Wha-Mo;Chung, Ho-Sam
    • Applied Microscopy
    • /
    • v.24 no.3
    • /
    • pp.23-33
    • /
    • 1994
  • It is well known that dichlorvos (DDVP), an organophosphate insecticide in common use, is so easily and rapidly hydrolyzed and excreted that it has usually little toxic effect on human body. In these days, however, it is widely used as an industrial and domestic insecticide and as an anthelmintic agent for animals, so that the accident of chemical poisoning occurs frequently. DDVP acts as a powerful inhibitor of carboxylic esterase, which can cause accumulation of acetylcholine at the synapses so paralysis of muscle and the transmission failure in cholinergic synapses dueing to desensitization of acetylcholin receptor may occure. Moreover accumulation of the acetylcholine brings about the elevation of the cyclic-AMP, which alters the cellular metabolisms of nucleic acid, carbohydrate, protein and lipid. Present study has undertaken to investigate the cardiotoxic effect of DDVP by electron microscopic study. A total of 30 Sprague-Dawley strain rats, weighing about 250gm were used as experimental animals. 2mg/kg/day of DDVP is intraperitonealy injected 3 times with intervals of every other day. On 1 day, 3 days, 5 days, 7 days and 14 days after drug administration, the animals were sacrified by cervical dislocation. Left ventricular cardiac muscles were resected and sliced into $1mm^3$. The specimens were embedded with Epon 812 and prepared by routine methods for electron microscopical observation. All preparations were stained with lead citrate and uranyl acetate and then observed with Hitachi-600 transmission electron microscope. The results were as follows: 1. In the cardiac muscle of DDVP treated rats, mitochondria with disorganized double membrane and mitochondrial crista, and vacuole formation in mitochondrial matrix were observed. But structures of mitochondria were recovered to normal in 14 days group. 2. In the cardiac muscle of DDVP treated rats, cisternae of sarcoplasmic reticulum were dilated and sacculated. But these changes were recovered to normal in 14 days group. 3. In the cardiac muscle of DDVP treated rats, glycogen particles around damaged myofibrils were decreased. But amount of glycogen particles were restored in 14 days group. 4. In the cardiac muscle of DDVP treated rats, disruption and discontinuation of myofilaments and disorganization of Z-disc were observed. But the structures of myofibrils were recovered to normal in 14 days group. It is consequently suggested that DDVP would induce the reversible degenerative changes on the ultrastructures in cardiac muscle of rat.

  • PDF

The Effect of Ionizing Radiation on the Ultrastructural Changes and Mechanism on the Cytoplasmic Organelles (전리방사선이 세포질 소기관의 미세구조변화와 기전에 미치는 영향)

  • Lee, Moo Seok;Lee, Jong Kyu;Nam, Ji Ho;Ha, Tae Yeong;Lim, Yeong Hyeon;Kil, Sang Hyeong
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.708-725
    • /
    • 2017
  • Ionizing radiation is enough energy to interact with matter to remove orbital electrons, neutrons, and protons in the atom. Ionizing radiation like this leads to oxidizing metabolism that alter molecular structure through direct and indirect interactions of radiation with the deoxyribonucleic acid in the nucleus and cytoplasmic organelles or via products of cytoplasm radiolysis. These ionization can result in tissue damage and disruption of cellular function at the molecular level. Consequently, ionizing radiation-induced modifications of ion channels and transporters have been reported. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Also, Reactive oxygen species formed on the effect of ionizing radiation can get across into neighboring cells through the cell junctions that are responsible for intercellular chemical communication, and may there bring about changes characteristic to radiation damage. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. This paper briefly reviewed reports on ionization radiation effects on cellular level that support the concept of radiation biology. A better understanding of the biological effects of ionizing radiation will lead to better use of and better protection from radiation.