• Title/Summary/Keyword: Ultrasound image guidance

Search Result 18, Processing Time 0.03 seconds

Image Guided Radiation Therapy

  • Ui-Jung Hwang;Byong Jun Min;Meyoung Kim;Ki-Hwan Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.37-52
    • /
    • 2022
  • Over the past decades, radiation therapy combined with imaging modalities that ensure optimal image guidance has revolutionized cancer treatment. The two major purposes of using imaging modalities in radiotherapy are to clearly delineate the target prior to treatment and set up the patient during radiation delivery. Image guidance secures target position prior to and during the treatment. High quality images provide an accurate definition of the treatment target and the possibility to reduce the treatment margin of the target volume, further lowering radiation toxicity and improving the quality of life of cancer patients. In this review, the various types of image guidance modalities used in radiation therapy are distinguished into ionized (kilovoltage and megavoltage image) and nonionized imaging (magnetic resonance image, ultrasound, surface imaging, and radiofrequency). The functional aspects, advantages, and limitation of imaging using these modalities are described as a subsection of each category. This review only focuses on the technological viewpoint of these modalities and any clinical aspects are omitted. Image guidance is essential, and its importance is rapidly increasing in modern radiotherapy. The most important aspect of using image guidance in clinical settings is to monitor the performance of image quality, which must be checked during the periodic quality assurance process.

Caudal and epidural blocks in infants and small children: historical perspective and ultrasound-guided approaches

  • Kil, Hae Keum
    • Korean Journal of Anesthesiology
    • /
    • v.71 no.6
    • /
    • pp.430-439
    • /
    • 2018
  • In infants and small children, ultrasound (US) guidance provides ample anatomical information to perform neuraxial blocks. We can measure the distance from the skin to the epidural space in the US image and can refer to it during needle insertion. We may also visualize the needle or a catheter during real-time US-guided epidural catheterization. In cases where direct needle or catheter visualization is difficult, US allows predicting successful puncture and catheterization using surrogate markers, such as dura mater displacement, epidural space widening due to drug injection, or mass movement of the drug within the caudal space. Although many experienced anesthesiologists still prefer to use conventional techniques, prospective randomized controlled trials using US guidance are providing increasing evidence of its advantages. The use of US-guided regional block will gradually become widespread in infants and children.

Ultrasound-guided Intervention in Cervical Spine (경추부 초음파 유도하 중재술)

  • Moon, Sang Ho
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.7 no.1
    • /
    • pp.49-66
    • /
    • 2014
  • Traditionally, cervical interventions have been performed under fluoroscopy. But radiation exposure is the major concern when obtaining fluoroscopic images and even under real-time fluoroscopy with contrast media or CT guidance, some cases of serious spinal cord injuries, cerebellar and brain stem infarction have been reported by unintentional intra-arterial injections especially during the transforaminal root blocks. Recently, the use of ultrasound-guided cervical interventions have increased. Ultrasound offers visualization of soft tissues including major neurovascular structures and also allows to observe the spread of injectant materials around the target structure. Ultrasound is radiation free, easy to use and the image can be performed continuously while the injectant is visualized in real-time, increasing the precision of injection. Importantly, ultrasound allows visualization of major nerves and vessels and thus leads to improve safety of cervical interventions by decreasing the incidence of injury or injection into nearby vasculature. We therefore reviewed to investigate the feasibility of performing cervical interventions under real-time ultrasound guidance.

  • PDF

Ultrasound-guided Intervention in Lumbar Spine (요추부 초음파 유도하 중재술)

  • Moon, Sang Ho
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.6 no.2
    • /
    • pp.81-93
    • /
    • 2013
  • This review was described to investigate the feasibility of using ultrasound as an image tool for interventions of lumbar spine. This article will first provide an overview of lumbosacral spine surface anatomy and sonoanatomy. A detailed understanding of anatomy is critical for interpretation of ultrasound and procedural performance at spine. Fluoroscopy is most commonly used in interventional spine procedures, but radiation exposure is the major concern when obtaining fluoroscopic images. Ultrasound is radiation-free, is easy to use, and can provide real-time images with high accuracy. Also this device can be used in virtually any clinical setting. Ultrasound guidance offers a reliable alternative to fluoroscopy or computed tomography for lumbar interventions and can be safely performed without radiation exposure.

  • PDF

Calibration Technique for Freehand 3-D Ultrasound System (3차원 초음파 시스템의 캘리브레이션 방법)

  • Hwang, Myun Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6066-6071
    • /
    • 2013
  • This paper proposes a calibration method for a freehand 3-D ultrasound system in medical robotic research. The calibration block with six wires was designed to set the fixed target points. The positions of the ultrasound probe and calibration block were measured using an optical tracker. The relationship between the position of the ultrasound probe and the pixel coordinates in the images was derived using a calibration process. The scaling matrix was also calculated. The experimental results showed that the proposed method could find solutions using a simple least square method from one or multiple ultrasound images.

Prediction of successful caudal epidural injection using color Doppler ultrasonography in the paramedian sagittal oblique view of the lumbosacral spine

  • Yoo, Seon Woo;Ki, Min-Jong;Doo, A Ram;Woo, Cheol Jong;Kim, Ye Sull;Son, Ji-Seon
    • The Korean Journal of Pain
    • /
    • v.34 no.3
    • /
    • pp.339-345
    • /
    • 2021
  • Background: Ultrasound-guided caudal epidural injection (CEI) is limited in that it cannot confirm drug distribution at the target site without fluoroscopy. We hypothesized that visualization of solution flow through the inter-laminar space of the lumbosacral spine using color Doppler ultrasound alone would allow for confirmation of drug distribution. Therefore, we aimed to prospectively evaluate the usefulness of this method by comparing the color Doppler image in the paramedian sagittal oblique view of the lumbosacral spine (LS-PSOV) with the distribution of the contrast medium observed during fluoroscopy. Methods: Sixty-five patients received a 10-mL CEI of solution containing contrast medium under ultrasound guidance. During injection, flow was observed in the LSPSOV using color Doppler ultrasonography, following which it was confirmed using fluoroscopy. The presence of contrast image at L5-S1 on fluoroscopy was defined as "successful CEI." We then calculated prediction accuracy for successful CEI using color Doppler ultrasonography in the LS-PSOV. We also investigated the correlation between the distribution levels measured via color Doppler and fluoroscopy. Results: Prediction accuracy with color Doppler ultrasonography was 96.9%. The sensitivity, specificity, positive predictive value, and negative predictive value were 96.7%, 100%, 100%, and 60.0%, respectively. In 52 of 65 patients (80%), the highest level at which contrast image was observed was the same for both color Doppler ultrasonography and fluoroscopy. Conclusions: Our findings demonstrate that color Doppler ultrasonography in the LS-PSOV is a new method for determining whether a drug solution reaches the lumbosacral region (i.e., the main target level) without the need for fluoroscopy.

A Study on the Implementation of Ultrasonic Guidance Algorithm for Improving Safety of Ultrasonic Varicose Vein Treatment (초음파 하지정맥류 치료의 안전성 개선을 위한 초음파 유도 알고리즘 구현에 관한 연구)

  • Kim, Seong-Cheol;Kim, Ju-Young;Noh, Si-Cheol;Choi, Heung-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.435-441
    • /
    • 2018
  • In this study, we performed to design an image guiding algorithm to improve the efficiency and safety of treatment of varicose vein by focused ultrasound. The algorithm was suggested by different guiding images according to the location of varicose veins. In the case of deep-seated varicose veins, the target area was marked on the surface of the blood vessel in the obtained cross-sectional blood vessel ultrasound image. In the case of the superficial varicose vein, A guiding system based on image segmentation algorithm of the vascular region was suggested and designed two different algorithms according to varicose veins progression degree. as a results, the algorithm based on ultrasound image show a small error with $830{\mu}m$ at maximum. However, the algorithm based on charge coupled device image has a maximum error of 8.3 mm in some data. Therefore, it is expected that additional study is needed for superficial varicose vein image guiding algorithm, and it is expected that the accuracy of blood vessel tracking should be evaluated by constructing simple system.

Brachytherapy: A Comprehensive Review

  • Lim, Young Kyung;Kim, Dohyeon
    • Progress in Medical Physics
    • /
    • v.32 no.2
    • /
    • pp.25-39
    • /
    • 2021
  • Brachytherapy, along with external beam radiation therapy (EBRT), is an essential and effective radiation treatment process. In brachytherapy, in contrast to EBRT, the radiation source is radioisotopes. Because these isotopes can be positioned inside or near the tumor, it is possible to protect other organs around the tumor while delivering an extremely high-dose of treatment to the tumor. Brachytherapy has a long history of more than 100 years. In the early 1900s, the radioisotopes used for brachytherapy were only radium or radon isotopes extracted from nature. Over time, however, various radioisotopes have been artificially produced. As radioisotopes have high radioactivity and miniature size, the application of brachytherapy has expanded to high-dose-rate brachytherapy. Recently, advanced treatment techniques used in EBRT, such as image guidance and intensity modulation techniques, have been applied to brachytherapy. Three-dimensional images, such as ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography are used for accurate delineation of treatment targets and normal organs. Intensity-modulated brachytherapy is anticipated to be performed in the near future, and it is anticipated that the treatment outcomes of applicable cancers will be greatly improved by this treatment's excellent dose delivery characteristics.

High-intensity focused ultrasound beam path visualization using ultrasound imaging (초음파 영상을 이용한 고강도 집중 초음파 빔 시각화)

  • Song, Jae Hee;Chang, Jin Ho;Yoo, Yang Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • In High-Intensity Focused Ultrasound (HIFU) treatment, effective localization of HIFU focus is important for developing a safe treatment plan. While Magnetic Resonance Imaging guided HIFU (MRIgHIFU) can visualize the ultrasound path during the treatment for localizing HIFU focus, it is challenging in ultrasound imaging guided HIFU (USIgHIFU). In the present study, a real-time ultrasound beam visualization technique capable of localizing HIFU focus is presented for USIgHIFU. In the proposed method, a short pulse, with the same center frequency of an imaging ultrasound transducer below the regulated acoustic intensity (i.e., Ispta < 720 mW/㎠), was transmitted through a HIFU transducer whereupon backscattered signals were received by the imaging transducer. To visualize the HIFU beam path, the backscattered signals underwent dynamic receive focusing and subsequent echo processing. From in vitro experiments with bovine serum albumin gel phantoms, the HIFU beam path was clearly depicted with low acoustic intensity (i.e., Ispta of 94.8 mW/㎠) and the HIFU focus was successfully localized before any damages were produced. This result indicates that the proposed ultrasound beam path visualization method can be used for localizing the HIFU focus in real time while minimizing unwanted tissue damage in USIgHIFU treatment.

Comparison of the Results of Ultrasound-guided Caudal Epidural Block - Herniated Intervertebral Disc vs Spinal Stenosis - (초음파를 이용한 미추 경막외 차단술의 결과 비교 - 추간판 탈출증과 척추관 협착증 -)

  • Kim, Young-Tae;Cho, Kyu-Jung;Ahn, Chi-Hoon
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.7 no.2
    • /
    • pp.105-112
    • /
    • 2014
  • Purpose: Ultrasound-guided epidural caudal block for low back pain and radiating pain is often performed in the treatment of outpatients. However, this procedure has a failure rate of up to 25% even when it performed by an experienced physician. The authors investigate the effectiveness of Ultrasound-guided epidural caudal block in patients related to disc herniation or spinal stenosis. Materials and Methods: Ultrasound-guided caudal epidural block was performed in 55 outpatients with LBP and radiating pain. Patient was placed in the prone position and sonographic image of sacral hiatus was obtained using linear probe. A 22-gauge needle was advanced into the sacrococcygeal membrane under ultrasound guidance and then medication was injected into the caudal epidural space. There were 31 cases of disc herniation, and 24 cases of spinal stenosis. Patients were evaluated by Visual Analog Scale (VAS) pain score at pre-treatment, post-treatment, 2 weeks and 4 weeks by telephone interviews. Results: 53 of the 55 cases (96.4%) of needle insertion into the sacral canal under ultrasound guidance were successful. Gender was not significantly different between disc herniation group and spinal stenosis group. But there was a significant age difference between disc herniation group ($42.3{\pm}10.8$), and spinal stenosis group ($62.8{\pm}15.1$) [p<0.001]. The VAS score at pre-treatment, post-treatment, 2 weeks, 4 weeks in disc group were 6.84, 3.1, 1.8 & 1.77. The VAS score at pre-treatment, post-treatment, 2 weeks, 4 weeks in spinal stenosis group were 6.88, 3.58, 4.33 & 4.88. The VAS score in both groups was significantly improved after the procedure (p<0.001). Over time, the two groups were statistically significant differences in VAS score after adjusting for age (p<0.001). Conclusion: Ultrasound-guided caudal epidural block seems to provide a high success rate and a significantly better response in disc group than spinal stenosis group.

  • PDF