• Title/Summary/Keyword: Ultrasound assisted extraction

Search Result 27, Processing Time 0.017 seconds

Development of Fast Screening Method for Crop Protection Agents in Tobacco by Stir Bar Sorptive Extraction and Thermal Desorption coupled to GC/MS

  • Min, Hye-Jeong;Lee, Jeong-Min;Shin, Han-Jae;Lee, Moon-Yong;Jang, Gi-Chul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.36 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • Simultaneous determination of crop protection agents(CPAs) in food are done with multi-residue methods, which are composed of sample clean-up, concentration, chromatographic separation and detection. Stir Bar Sorptive Extraction(SBSE) technique is used for sample preparation of various analytes in several fields. The aim of this study was to develop a sensitive and fast method based on SBSE followed by thermal desorption - gas chromatography - mass spectrometry(TD - GC/MS) to determine CPAs in tobacco sample. For the analysis of tobacco sample prior to the SBSE method, solvent extraction or ultrasound-assisted solvent extraction was performed. methanol was used as the extraction solvent. The extract was then diluted with water. Finally, the sample was subjected to SBSE. A method for fast screening of crop protection agents in tobacco using SBSE-TD - GC/MS has been developed. About 17 CPAs including organochlorine, organophosphorous and others were identified and quantified. This method showed good linearity and high sensitivity for most of the target CPAs. The method was applied to the determination of CPAs at ng/mL levels in tobacco sample. This method is simple, rapid and may be applied in detection of other components.

Optimization and validation of HPLC/DAD method for the determination of adenosine and cordycepin in cordyceps products

  • Sasikarn Panpraneecharoen;Tisorn Chatrakoon;Sompong Sansenya;Saowapa Chumanee
    • Analytical Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.152-160
    • /
    • 2023
  • Adenosine and cordycepin are bioactive compounds with health benefits. Therefore, both substances are often used to assess the quality of Cordyceps products. Optimization and validation of the HPLC/DAD method for determining two nucleosides were studied. The samples were prepared using an ultrasound-assisted extraction (ultrasonic bath). The result was optimal conditions for aqueous extraction, an extraction time of 35 min, and an extraction temperature of 40 ℃. The Chromatographic separation was achieved using a reverse phase column (InfinityLab Poroshell 120 EC-C18, 4.6 × 250 mm, 2.7 ㎛) at 30 ℃ with a mobile phase gradient elution of water and methanol at a flow rate of 0.7 mL/min. The eluents were monitored via a diode array detector at 260 nm. Two nucleosides were separated by less than 12 min after injection. The developed method was found to be excellent linear (r2 > 0.9999), accurate (% recovery 95.34-98.51), and precise (% relative standard deviation < 2.0). The limit of detection (LOD) and quantification (LOQ) were 0.45 and 1.38 mg/mL for adenosine and 0.47 and 1.43 mg/mL for cordycepin, respectively. This method was satisfactory for simultaneously quantitating two nucleoside contents, which were used to evaluate Cordyceps products.

A Study on Rapid Residual Analysis of Benzo(a)pyrene in Agricultural Products and Soils (농산물 및 경작지 토양 시료 중 Benzo(a)pyrene 신속잔류분석법 개선 연구)

  • Kim, Hee-Gon;Ham, Hun-Ju;Hong, Kyong-Suk;Shin, Hee-Chang;Hur, Jang Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.44-49
    • /
    • 2020
  • BACKGROUND: Benzo(a)pyrene is a highly toxic substance which has been listed as a Group I carcinogen by the International Agency for Research on Cancer. There have been numerous studies by researchers worldwide on benzo(a)pyrene. Soxhlet, ultrasound-assisted, and liquid-liquid extractions have been widely used for the analysis of benzo(a)pyrene. However these extraction methods have significant drawbacks, such as long extraction time and large amount of solvent usage. To overcome these disadvantages, we aimed to establish a rapid residual analysis of benzo(a)pyrene content in agricultural products and soil samples. METHODS AND RESULTS: A Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method was used as the pretreatment procedure. For rapid residual analysis of benzo(a)pyrene, a modified QuEChERS method were used, and the best codition was demonstrated after various performing instrument analysis. The extraction efficiency of this method was also compared with Soxhlet extraction, the current benzo(a)pyrene extracting method. Although both methods showed high recovery rates, the rapid residual analysis method markedly reduced both the measurement time and solvent usage by approximately 97% and 96%, respectively. CONCLUSION: Based on these results, we suggest the rapid residual analysis method established through this study, faster and more efficient analysis of residual benzo(a)pyrene in major agricultural products such as rice, green and red chili peppers and also soil samples.

Optimization of Extraction Conditions for Mixture of Camellia sinensis L. and Artemisia argyi by Response Surface Methodology (반응표면분석을 이용한 녹차와 애엽 혼합물의 추출조건 최적화)

  • Kim, Young-Hyun;Kim, Woo-Sik;Kim, Jae-Min;Choi, Sun-il;Jung, Tae-Dong;Lee, Jin-Ha;Kim, Jong-Dai;Lim, Jae Kag;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.4
    • /
    • pp.278-285
    • /
    • 2016
  • This study used response surface methodology (RSM) in an effort to optimize the ultrasoundassisted extraction condition of Camellia sinensis L. and Artemisia argyi mixture in order to increase extraction yield in the extract. The effects of three independent variables, $X_1$ (Mixture ratio, 60-80%), $X_2$ (Ratio of water to raw material, 20~100 mL/g), and $X_3$ (Extraction time, 25-145 min), were investigated at three levels using Box-Behnken design (BBD) to obtain the highest extraction efficiency. Y (Extraction yield) was chosen as dependent variable. Our result showed that the coefficient of determination ($R^2$) of the model was 0.9747, with significant at the level of p < 0.002. Furthermore, the predicted values of each variable were similar to the actual values. The optimum extraction conditions were as follows: mixture ratio of 85.86%, ratio of water to raw material of 92.73 mL/g, and extraction time of 56.52 min. At these conditions, predicted extraction yield was 30.03%. The analysis of variance (ANOVA) indicated a high goodness of model fit and the success of the RSM method for optimizing extraction conditions of Camellia sinensis L. and Artemisia argyi mixture.

Improvement of Fetal Heart Rate Extraction from Doppler Ultrasound Signal (도플러 초음파 신호에서의 태아 심박 검출 개선)

  • Kwon, Ja Young;Lee, Yu Bin;Cho, Ju Hyun;Lee, Yoo Jin;Choi, Young Deuk;Nam, Ki Chang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.328-334
    • /
    • 2012
  • Continuous fetal heart beat monitoring has assisted clinicians in assuring fetal well-being during antepartum and intrapartum. Fetal heart rate (FHR) is an important parameter of fetal health during pregnancy. The Doppler ultrasound is one of very useful methods that can non-invasively measure FHR. Although it has been commonly used in clinic, inaccurate heart rate reading has not been completely resolved.. The objective of this study is to improve detection algorithm of FHR from Doppler ultrasound signal with simple method. We modified autocorrelation function to enhance signal periodicity and adopted adaptive window size and shifted for data segment to be analysed. The proposed method was applied to real measured data, and it was verified that beat-to-beat FHR estimation result was comparable with the reference fetal ECG data. This simple and effective method is expected to be implemented in the embedded system.

Optimization of Extraction of Functional Components from Black Rice Bran (흑미 미강의 기능성 성분 추출 공정 최적화)

  • Jo, In-Hee;Choi, Yong-Hee
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.388-397
    • /
    • 2011
  • The purpose of this study was to determine the optimum ethanol extraction conditions for maximum extraction of functional components such as ferulic acid, oryzanol, and toopherol from black rice bran using Response Surface Methodology (RSM). A central composite design was applied to investigate the effects of the independent variables of solvent ratio ($X_{1}$), extraction temperature ($X_{2}$) and extraction time ($X_{3}$) on the dependent variables such as total phenol components ($Y_{1}$), total flavonoids compounds ($Y_{2}$), electron donating ability ($Y_{3}$), $\gamma$-oryzanol ($Y_{4}$), ferulic acid ($Y_{5}$) and $\alpha$-toopherol components ($Y_{6}$). ANOVA results showed that coefficients of determination (R-square) of estimated models for dependent variables ranged from 0.8939 to 0.9470. It was found that solvent ratio and extraction temperature were the main effective factors in this extraction proess. Particularly, the extraction efficiency of ferulic acid, $\gamma$-oryzanol and $\alpha$-toopherol components were significantly affected by extraction temperature. As a result, optimum extraction conditions were 20.35 mL/g of solvent ratio, 79.4$^{\circ}C$ of extraction temperature and 2.88 hr of extraction time. Predicted values at the optimized conditions were acceptable when compared with experimental values.

A study of analytical method for Benzo[a]pyrene in edible oils (식용유지 중 벤조피렌 분석법 비교 연구)

  • Min-Jeong Kim;jun-Young Park;Min-Ju Kim;Eun-Young Jo;Mi-Young Park;Nan-Sook Han;Sook-Nam Hwang
    • Analytical Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.291-299
    • /
    • 2023
  • The benzo[a]pyrene in edible oils is extracted using methods such as Liquid-liquid, soxhlet and ultrasound-assisted extraction. However these extraction methods have significant drawbacks, such as long extraction time and large amount of solvent usage. To overcome these drawbacks, this study attempted to improve the current complex benzo[a]pyrene analysis method by applying the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method that can be analyzed in a simple and short time. The QuEChERS method applied in this study includes extraction of benzo[a]pyrene into n-hexane saturated acetonitrile and n-hexane. After extraction and distribution using magnesium sulfate and sodium chloride, benzo[a]pyrene is analyzed by liquid chromatography with fluorescence detector (LC/FLR). As a result of method validation of the new method, the limit of detection (LOD) and quantification (LOQ) were 0.02 ㎍/kg and 0.05 ㎍/kg, respectively. The calibration curves were constructed using five levels (0.1~10 ㎍/kg) and coefficient (R2) was above 0.99. Mean recovery ratio was ranged from 74.5 to 79.3 % with a relative standard deviation (RSD) between 0.52 to 1.58 %. The accuracy and precision were 72.6~79.4 % and 0.14~7.20 %, respectively. All results satisfied the criteria ranges requested in the Food Safety Evaluation Department guidelines (2016) and AOAC official method of analysis (2023). Therefore, the analysis method presented in this study was a relatively simple pretreatment method compared to the existing analysis method, which reduced the analysis time and solvent use to 92 % and 96 %, respectively.