• Title/Summary/Keyword: Ultrasound Wave

Search Result 230, Processing Time 0.026 seconds

Analysis of Ultrasound Synthetic Transmit Focusing Using Plane Waves (평면파를 이용한 초음파 합성 송신 집속 기법의 해석)

  • Lee, Jong Pil;Song, Jae Hee;Song, Tai-Kyong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.200-209
    • /
    • 2014
  • In this paper, we present a general model for synthetic transmit focusing method using plane waves (STF-PW) of which the properties are investigated through mathematical analysis and compared with those of the conventional focusing method. The analysis results show that STF-PW produces non-diffracting beams in the sense that their main lobe widths do not change with depth. We also present a method for synthesis of plane waves to obtain a desired main lobe width while preventing grating lobe generation and a method for broadening the region over which the non-diffracting property is maintained. The proposed model and analysis results were validated through computer simulations.

Synthesis of Nano-Scale Photocatalyic TiO2 Powder Doped with Ag by Sonochemistry Reaction (초음파화학 반응에 의한 Ag 도핑 광촉매용 나노 TiO2 분말의 합성)

  • Cho, Sung-Hun;Lee, Soo-Whon
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.169-173
    • /
    • 2009
  • In chemistry, the study of sonochemistry is concerned with understanding the effect of sonic waves and wave properties on chemical systems. In the area of chemical kinetics, it has been observed that ultrasound can greatly enhance chemical reactivity in a number of systems by as much as a million-fold. Nano-technology is a super microscopic technology in which structures of 100 nanometers or smaller can be investigated. This technology has been used to develop $TiO_2$ materials and $TiO_2$ devices of that size. Thus far, electrochemistry methods and photochemistry methods have generally been used to create $TiO_2$ nano-size particles. However, these methods are complicated and create pollutants as a by-product. In the present study, nano-scale silver particles (5 nm) were prepared in a sonochemistry method. Sonochemistry deals with mechanical energy that is provided by the collapse of cavitation bubbles that form in solutions during exposure to ultrasound. $TiO_2$ powders 25 nm in size doped with Ag were formed using an ultrasonic sound technique. The experimental results showed the high possibility of removing pollution through the action of a photocatalyst. This powder synthesis technique can be considered as an environmentally friendly powder-forming processing owing to its energy saving characteristics.

NDE Inspecting Techniques for Wind Turbine Blades Using Terahertz Waves (테라헤르츠파를 이용한 풍력터빈 블레이드 NDE 탐상 평가기법)

  • Im, Kwang-Hee;Kim, Sun-Kyu;Jung, Jong-An;Cho, Young-Tae;Woo, Yong-Deuck
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.245-251
    • /
    • 2018
  • Terahertz waves (T-ray) was extensively studied for the NDE (nondestructive evaluation) of characterization of trailing edges for a use of turbines composed with composite materials. The used NDE system were consisted of both CW(Continuous wave) and TDS (Time domain spectroscopy). The FRP composites were utilized for two kinds of both trailing edges of wind energy (non-conducting polymeric composites) and carbon fiber composites with conducting properties. The signals of T-ray in the TDS (Time domain spectroscopy) mode resembles almost that of ultrasound waves; however, a terahertz pulse could not penetrate a material with conductivity unlike ultrasound. Also, a method was suggested to obtain the "n" in the materials, which is called the refractive index (n). The data of refractive index (n) could be solved for the trailing edges. The trailing edges were scanned for characterization and inspection. C-scan and B-scan images were obtained and best optimal NDE techniques were suggested for complicated geometry samples by terahertz radiation. Especially, it is found that the defect image of T-ray corresponded with defect locations for the trailing edges of wind mill.

Sonochemical Grafting of Poly(vinyl alcohol) onto Multiwall Carbon Nanotubes in Water (초음파를 이용한 PVA에 의한 다중벽 탄소나노튜브의 수상 그래프팅)

  • Kim, Yeongseon;Baeck, Sung Hyeon;Shim, Sang Eun
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.378-385
    • /
    • 2014
  • Multiwall carbon nanotubes (MWCNTs) were modified with a water soluble polymer, poly(vinyl alcohol), PVA, using a simple ultrasonic wave in water. Under the irradiation of ultrasound, PVA chains were severed as macroradicals and instantly grafted onto the surface of MWCNTs due to the radical scavenging effect of MWCNTs. To control the grafting PVA onto MWCNTs, the ultrasonication power and irradiation time were changed from 300 to 500 W and from 10 to 50 min, respectively. The grafted PVA onto MWCNTs was confirmed by FTIR, TGA, SEM, and TEM. Dispersion stability of the modified MWCNTs was monitored by Turbiscan. The amount of grafted PVA on MWCNTs increased with the increase in the sonication power and irradiation time. The grafted PVA on MWCNTs induced the improved dispersion stability of the modified MWCNTs in water. These findings exhibit that ultrasound can be readily used for the grafting polymer chains on MWCNTs.

Measurement of High Temperature Anisotropic Elastic Constants of Zr-2.5Nb Pressure Tube Materials by Resonant Ultrasound Spectroscopy (초음파공명분광법에 의한 Zr-2.5Nb 압력관 재료의 고온 이방성 탄성계수 측정)

  • Cheong, Yong-Moo;Kim, Sung-Soo;Kim, Young-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.140-148
    • /
    • 2002
  • Anisotropic elastic constants of Zr-2.5Nb pressure tube materials were determined by a high temperature resonant ultrasound spectroscopy (RUS). The resonant frequencies were measured using alumina wave-guides and wide band ultrasonic transducers in a small furnace. The rectangular parallelepiped specimens were fabricated along with the axial, radial and circumferential direction of the pressure tube. A nine elastic stiffness tensor for orthotropic symmetry was determined in the range of room temperature ${\sim}500^{\circ}C$. As the temperature increases, the elastic constant tensor, cij gradually decreases. Higher elastic constants along the transverse direction compared to those along the axial or radial direction are similar to the case of Young's modulus or shear modulus. A crossing of shear elastic constants along axial direction and radial direction was observed near $150^{\circ}C$. This fact corresponds to the crossing of c44 and c66 of single crystal zirconium.

Studies on the Ultrasound-guided Transvaginal Retrieval of Oocytes in Korean Native, Hanwoo Heifers I. Characteristics of Hanwoo Ovary during the Estrous Cycle (한우에 있어서 초음파기기를 이용한 생체내 난자 채취에 관한 연구 I. 발정주기중 난소의 특성 변화)

  • 박성재;양보석;임기순;성환후;장원경;조성근;박충생
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.1
    • /
    • pp.77-82
    • /
    • 2000
  • This study was conducted to establish the methods of ultrasound-guided transvaginal retrieval of oocytes (ovum pick-up) in Korean native, Hanwoo Heifers. To obtain the basic data about Hanwoo, the size of ovaries in luteal and follicular phases were measured and the number of follicles in ovaries during the estrus cycle was counted by using ultrasound. And to determine the effective anesthetic to Hanwoo, various mixture of anesthetic compounds, Rompun(equation omitted), lidocaine, Monzal(equation omitted), and Domosedan(equation omitted), were treated. The size of Hanwoo ovaries were not significant differently between luteal and follicular phases. The number of medium and small follicles were peak on day 3 and 12 of the estrous cycle, and this result suggested that Hanwoo has 2 follicular growth waves per estrus cycle. The most effective anesthetic method was intramuscular injection of a.3m! Rompun(equation omitted), epidural injection of 5$m\ell$ lidocaine and sprayed cervix by 2$m\ell$ lidocaine.

  • PDF

Wheelchair martial arts practitioners have similar bone strength, sitting balance and self-esteem to healthy individuals

  • Fong, Shirley S.M.;Ng, Shamay S.M.;Li, Anthony O.T.;Guo, X.
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • Objective: The aim of this study was to compare the radial bone strength, sitting balance ability and global self-esteem of wheelchair martial arts practitioners and healthy control participants. Design: Cross-sectional study. Methods: Nine wheelchair martial art practitioners with physical disabilities and 28 able-bodied healthy individuals participated in the study. The bone strength of the distal radius was assessed using the Sunlight Mini-Omni Ultrasound Bone Sonometer; sitting balance was quantified using the modified functional reach test (with reference to a scale marked on the wall); and the self-administered Rosenberg self-esteem (RSE) scale was used to measure the global self-esteem of the participants. The velocity of the ultrasound wave (speed of sound, m/s) traveling through the outer surface of the radial bone was measured and was then converted into a T-score and a Z-score. These ultrasound T-score and Z-score that represent bone strength; the maximum forward reaching distance in sitting (cm) that represents sitting balance; and the RSE total self-esteem score that indicates global self-esteem were used for analysis. Results: The results revealed that there were no statistically significant between-group differences for radial bone-strength, maximum forward reaching distance, or self-esteem outcomes. Conclusions: The wheelchair martial arts practitioners had similar radial bone strength, sitting balance performance and self-esteem to able-bodied healthy persons. Our results imply that wheelchair martial arts might improve bone strength, postural control and self-esteem in adult wheelchair users. This new sport-wheelchair martial arts-might be an exercise option for people with physical disabilities.

Sonochemical Oxidation Reactions in 300 kHz Sonoreactor for Various Liquid Height/Volume Conditions (다양한 액상 수위/부피 조건에서의 300kHz 초음파 캐비테이션 산화반응 분석 연구)

  • Lee, Seongeun;Son, Younggyu
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.5
    • /
    • pp.211-219
    • /
    • 2022
  • In this study, the effect of liquid height/volume on sonochemical oxidation reactions was investigated in 300 kHz sonoreactors. The gas mixture of Ar/O2 (50:50) was applied in two modes including saturation and sparging, and zero-order reaction (KI dosimetry) and first-order reaction (Bisphenol A (BPA) degradation) were used to quantitatively analyze sonochemical oxidation reactions. For the zero-order reaction, the highest sonochemical oxidation activity was obtained for the liquid height of 5𝛌, and the lowest height for both the gas saturation and sparging conditions. In addition, the sparging did not enhance the sonochemical oxidation activity for all height conditions except for 50𝛌, where very low activity was obtained. It was found that in sonochemiluminescence (SCL) images the sonochemical active zone was formed adjacent to the liquid surface for the gas sparging condition due to the formation of the standing wave field while the active zone was formed adjacent to the transducer at the bottom due to the blockage of ultrasound. For the first-order reaction, the highest activity was also obtained at 5𝛌 and the comparison based on the reactant mass was not appropriate because the concentration of the reactant (BPA) decreased significantly as the reaction time elapsed. Consequently, it was revealed that the determination of optimal liquid height (ultrasound irradiation distance) based on the wavelength of the applied ultrasound frequency was very important for the optimal design of sonoreactors in terms of reaction efficiency and reactor size.

Scoping Review of Ultrasonography in Assessing Manipulative Treatment for Spinal Diseases (척추 질환의 수기치료에서 진단용 초음파 활용을 위한 주제범위 문헌고찰)

  • Hyo-Eun Kim;Chang-Yeon Jung;Se-Jin Choi;Yeon-Woo Lee;Man-Suk Hwang
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.34 no.1
    • /
    • pp.11-22
    • /
    • 2024
  • Objectives This study aims to comprehensively review research utilizing ultrasonography for assessing manipulative treatment on spinal diseases, with the goal of promoting the wider integration of ultrasound imaging into clinical practice. Methods A systematic search was conducted on three international databases (Embase, PubMed, Cochrane) up to July 23, 2023. The search included key terms such as ultrasonography, manipulation, and skeletal muscle. The inclusion criteria narrowed down the selection to studies specifically related to lumbar and cervical vertebrae. Results Eleven studies were included in the review, with 10 focusing on lumbar vertebrae and one on cervical vertebrae, all employing spinal manipulation treatment. Among the 11 selected studies, nine primarily focused on ultrasound imaging to measure muscle thickness, while two utilized shear wave elastography to assess muscle stiffness. Also, rigorous measures were taken to ensure the reliability of the ultrasonography data. Conclusions This scoping review highlights the limited but growing evidence supporting the use of ultrasonography to assess manipulative treatment for spinal diseases. Despite a scarcity of studies in South Korea, it is crucial to recognize the potential of ultrasonography in becoming a widely used and practical tool for evaluating the effectiveness of manipulative treatments in the near future.

Cell-cultivable ultrasonic transducer integrated on glass-coverslip (세포 배양 가능한 커버슬립형 초음파 변환자)

  • Keunhyung Lee;Jinhyoung Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.412-421
    • /
    • 2023
  • Ultrasound brain stimulation is spot-lighted by its capability of inducing brain cell activation in a localized deep brain region and ultimately treating impaired brain function while the efficiency and directivity of neural modulation are highly dependent on types of stimulus waveforms. Therefore, to optimize the types of stimulation parameters, we propose a cell-cultivable ultrasonic transducer having a series stack of a spin-coated polymer piezoelectric element (Poly-vinylidene fluoride-trifluorethylene, PVDF-TrFE) and a parylene insulating layer enhancing output acoustic pressure on a glass-coverslip which is commonly used in culturing cells. Due to the uniformity and high accuracy of stimulus waveform, tens of neuronal cell responses located on the transducer surface can be recorded simultaneously with fluorescence microscopy. By averaging the cell response traces from tens of cells, small changes to the low intensity ultrasound stimulations can be identified. In addition, the reduction of stimulus distortions made by standing wave generated from reflections between the transducers and other strong reflectors can be achieved by placing acoustic absorbers. Through the proposed ultrasound transducer, we could successfully observe the calcium responses induced by low-intensity ultrasound stimulation of 6 MHz, 0.2 MPa in astrocytes cultured on the transducer surface.