• Title/Summary/Keyword: Ultrasound Medical Imaging

Search Result 277, Processing Time 0.023 seconds

Comparative Efficacy of Four Imaging Instruments for Breast Cancer Screening

  • Mehnati, Parinaz;Tirtash, Maede Jafari
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6177-6186
    • /
    • 2015
  • Sensitivity and specificity are the two most important indicators in selection of medical imaging devices for cancer screening. Breast images taken by conventional or digital mammography, ultrasound, MRI and optical mammography were collected from 2,143,852 patients. They were then studied and compared for sensitivity and specificity results. Optical mammography had the highest sensitivity (p<0.001 and p<0.006) except with MRI. Digital mammography had the highest specificity for breast cancer imaging. A comparison of specificity between digital mammography and optical mammography was significant (p<0.021). If two or more breast diagnostic imaging tests are requested the overall sensitivity and specificity will increase. In this literature review study patients at high-risk of breast cancer were studied beside normal or sensitive women. The image modality performance of each breast test was compared for each.

Development of Master-slave System for Robot-assisted Remote Ultrasound Diagnosis (로봇 지원 원격 초음파 영상진단을 위한 마스터-슬레이브 시스템의 개발)

  • Seo, Joonho;Cho, Jang Ho;Kwon, Ohwon
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.395-401
    • /
    • 2017
  • In this paper, we introduce a robot-assisted medical diagnostic system that enables remote ultrasound (US) imaging to be applied to the conventional telemedicine, which has been possible only with interviewing or a visual exam. In particular, a master-slave robot system is developed that ultrasonic diagnosis specialist can control the position and orientation of US probe in the remote place. The slave robot is designed to be compact, lightweight, and hand-held so that it can easily transfer to the remote healthcare center. Moreover, 6-degree-of-freedom (DOF) probe motion is possible by the robot design based on Stewart platform. The master device is also based on a similar structure of the slave robot. To connect master and slave system in the wide area network (WAN) environment, a hardware CODEC was developed. In this paper, we introduce the detail of each component and the results of the recent experiments conducted in the remote sites by the developed robotic ultrasound imaging system.

Ultrasound-optical imaging-based multimodal imaging technology for biomedical applications (바이오 응용을 위한 초음파 및 광학 기반 다중 모달 영상 기술)

  • Moon Hwan Lee;HeeYeon Park;Kyungsu Lee;Sewoong Kim;Jihun Kim;Jae Youn Hwang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.429-440
    • /
    • 2023
  • This study explores recent research trends and potential applications of ultrasound optical imaging-based multimodal technology. Ultrasound imaging has been widely utilized in medical diagnostics due to its real-time capability and relative safety. However, the drawback of low resolution in ultrasound imaging has prompted active research on multimodal imaging techniques that combine ultrasound with other imaging modalities to enhance diagnostic accuracy. In particular, ultrasound optical imaging-based multimodal technology enables the utilization of each modality's advantages while compensating for their limitations, offering a means to improve the accuracy of the diagnosis. Various forms of multimodal imaging techniques have been proposed, including the fusion of optical coherence tomography, photoacoustic, fluorescence, fluorescence lifetime, and spectral technology with ultrasound. This study investigates recent research trends in ultrasound optical imaging-based multimodal technology, and its potential applications are demonstrated in the biomedical field. The ultrasound optical imaging-based multimodal technology provides insights into the progress of integrating ultrasound and optical technologies, laying the foundation for novel approaches to enhance diagnostic accuracy in the biomedical domain.

Implementation of an Ultrasound Elasticity Imaging System

  • Cho Gae-Young;Yoon Ra-Young;Park Jeong-Man;Kwon Sung-Jae;Ahn Young-Bok;Bae Moo-Ho;Jeong Mok-Kun
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.117-124
    • /
    • 2006
  • Recently, active research has been going on to measure the elastic modulus of human soft tissue with medical ultrasound imaging systems for the purpose of diagnosing cancers or tumors which have been difficult to detect with conventional B-mode imaging techniques. In this paper, a real-time ultrasonic elasticity imaging system is implemented in software on a Pentium processor-based ultrasonic diagnostic imaging system. Soft tissue is subjected to external vibration, and the resulting tissue displacements change the phase of received echoes, which is in turn used to estimate tissue elasticity. It was confirmed from experiment with a phantom that the implemented elasticity imaging system could differentiate between soft and hard regions, where the latter is twice harder than the former, while operating at an adequate frame rate of 20 frames/s.

Ultrasonographic findings of mesenchymal chondrosarcoma of the mandible: report of a case

  • Shahidi, Shoaleh;Shakibafard, Alireza;Zamiri, Barbod;Mokhtare, Mohammad Reza;Houshyar, Maneli;Houshyar, Maral;Amanpour, Sara
    • Imaging Science in Dentistry
    • /
    • v.42 no.2
    • /
    • pp.115-119
    • /
    • 2012
  • Today, ultrasound imaging is being widely used to assess soft tissue lesions in the maxillofacial region. However, ultrasound investigations of intra-osseous lesions are rare, especially for tumors of the jaws. This report emphasized the capability of this useful imaging modality in identification of the characteristics of malignant conditions involving the bone. Mesenchymal chondrosarcoama, one of the unusual malignant conditions of the jaw, was presented in a young male with significant facial swelling. Different imaging modalities parallel with the histopathologic investigation confirmed the diagnosis. Interestingly, destruction of the bony cortex and new bone formation with a characteristic "sun ray appearance", highly suggestive of sarcomas, was manifested on the ultrasonograph. Thus, this report presented the ultrasonographic features of chondrosarcoma of mandible and considered the ultrasonography to be a useful imaging modality to evaluate intra-osseous jaw lesions.

Modified Piezoelectric Ceramics for Portable Ultrasonic Medical Probe Application (휴대용 의료 초음파 프로브 적용을 위한 압전체 제조 및 특성)

  • Kang, Dong Heon;Chae, Mi Na;Hong, Se Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.483-488
    • /
    • 2016
  • Ultrasound imaging by using piezoelectric materials, such as lead zirconium titanate (PZT) has been one of the most preferred modes of imaging in the medical field due to its simple, low cost and non-ionizing radiation in comparison to other imaging techniques. Recently, the market demand for portable ultrasound is becoming larger with applications in developing countries, disaster area, military, and emergency purposes. However, most of ultrasound probes used is bulky and high power consumable, so unsuitable for such applications. In this study, the 3 layered ceramic specimen consisted of 128 pitches of $420{\mu}m$ in width and $450{\mu}m$ in thickness were prepared by using the Ti-rich PZT compositions co-fired at $1,050^{\circ}C$. Their electrical and ultrasound pulse-echo properties were investigated and compared to the single layer specimen. The 3 layered ultrasound probe showed 1.584 V of Vp-p, which is 3.2 times higher than single layered one, implying that it would allow effectively such a portable ultrasound probe system. The result were discussed in terms of higher capacitance, lower impedance and higher dielectric coefficient of the 3 layered ultrasound probe.

3D Ultrasound Panoramic Image Reconstruction using Deep Learning (딥러닝을 활용한 3차원 초음파 파노라마 영상 복원)

  • SiYeoul Lee;Seonho Kim;Dongeon Lee;ChunSu Park;MinWoo Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.255-263
    • /
    • 2023
  • Clinical ultrasound (US) is a widely used imaging modality with various clinical applications. However, capturing a large field of view often requires specialized transducers which have limitations for specific clinical scenarios. Panoramic imaging offers an alternative approach by sequentially aligning image sections acquired from freehand sweeps using a standard transducer. To reconstruct a 3D volume from these 2D sections, an external device can be employed to track the transducer's motion accurately. However, the presence of optical or electrical interferences in a clinical setting often leads to incorrect measurements from such sensors. In this paper, we propose a deep learning (DL) framework that enables the prediction of scan trajectories using only US data, eliminating the need for an external tracking device. Our approach incorporates diverse data types, including correlation volume, optical flow, B-mode images, and rawer data (IQ data). We develop a DL network capable of effectively handling these data types and introduce an attention technique to emphasize crucial local areas for precise trajectory prediction. Through extensive experimentation, we demonstrate the superiority of our proposed method over other DL-based approaches in terms of long trajectory prediction performance. Our findings highlight the potential of employing DL techniques for trajectory estimation in clinical ultrasound, offering a promising alternative for panoramic imaging.

A Highly-Integrated Analog Front-End IC for Medical Ultrasound Imaging Systems (초음파 의료 영상시스템용 고집적 아날로그 Front-End 집적 회로)

  • Banuaji, Aditya;Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.49-55
    • /
    • 2013
  • A high-voltage highly-integrated analog front-end (AFE) IC for medical ultrasound imaging applications is implemented using standard 0.18-${\mu}m$ CMOS process. The proposed AFE IC is composed of a high-voltage (HV) pulser utilizing stacked transistors generating up to 15 Vp-p pulses at 2.6 MHz, a low-voltage low-noise transimpedance preamplifier, and a HV switch for isolation between the transmit and receive parts. The designed IC consumes less than $0.15mm^2$ of core area, making it feasible to be applied for multi-array medical ultrasound imaging systems, including portable handheld applications.

Medical Ultrasonic Elasticity Imaging Techniques (의료용 초음파탄성영상법)

  • Jeong, Mok-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.573-584
    • /
    • 2012
  • Breast and prostate tumors or cancers tend to be stiffer than the surrounding normal tissue. However, the difference in echogenicity between cancerous and normal tissues is not clearly distinguishable in ultrasound B-mode imaging. Thus, imaging the stiffness contrast between the two different tissue types helps to diagnose lesions quantitatively, and such a method of imaging the elasticity of human tissue is termed ultrasound elasticity imaging. Recently, elasticity imaging has become an effective complementary diagnostic modality along with ultrasound B-mode imaging. This paper presents various elasticity imaging methods that have been reported up to now and describes their characteristics and principles of operation.

A New Synthetic Aperture Technique Using Linear Wave Fronts (선형 파면을 이용한 새로운 합성구경 기법)

  • 장진호;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.321-330
    • /
    • 2001
  • In this paper, we propose a new synthetic aperture focusing scheme for improving the lateral resolution which is one of the most important factors determining the quality of ultrasound imaging. The proposed scheme enables full round-trip dynamic focusing with approximately limited property. This properties are obtained through transmitting plane waves of which the traveling angle varies with the receive subaperture position, as opposed to stepping the spherical wave source across an array in other synthetic aperture focusing schemes, and employing dynamic focusing in receive. In this paper, the properties of the proposed scheme is analyzed in which a hypothetical infinite line source is used to transmit the plane waves and verified through computer simulation results. Also, we show that the proposed scheme is realizable with an array transducer with a finite aperture size. In summary, it is shown through comparison between the field contours of the proposed scheme and the conventional scheme that the proposed scheme can improve greatly the lateral resolution of ultrasound imaging.

  • PDF