• Title/Summary/Keyword: Ultrasound Image

Search Result 427, Processing Time 0.03 seconds

Multistage Transfer Learning for Breast Cancer Early Diagnosis via Ultrasound (유방암 조기 진단을 위한 초음파 영상의 다단계 전이 학습)

  • Ayana, Gelan;Park, Jinhyung;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.134-136
    • /
    • 2021
  • Research related to early diagnosis of breast cancer using artificial intelligence algorithms has been actively conducted in recent years. Although various algorithms that classify breast cancer based on a few publicly available ultrasound breast cancer images have been published, these methods show various limitations such as, processing speed and accuracy suitable for the user's purpose. To solve this problem, in this paper, we propose a multi-stage transfer learning where ResNet model trained on ImageNet is transfer learned to microscopic cancer cell line images, which was again transfer learned to classify ultrasound breast cancer images as benign and malignant. The images for the experiment consisted of 250 breast cancer ultrasound images including benign and malignant images and 27,200 cancer cell line images. The proposed multi-stage transfer learning algorithm showed more than 96% accuracy when classifying ultrasound breast cancer images, and is expected to show higher utilization and accuracy through the addition of more cancer cell lines and real-time image processing in the future.

  • PDF

Introduction to Knobology Focusing on B Mode and Doppler Setting in Musculoskeletal Ultrasound (근골격계 초음파의 기판 조절 입문: B Mode와 Doppler)

  • Min, Kyunghoon
    • Clinical Pain
    • /
    • v.20 no.1
    • /
    • pp.7-14
    • /
    • 2021
  • Musculoskeletal ultrasound has evolved as the essential tool to diagnose and guide intervention procedures in people with neuromusculoskeletal conditions. Image optimization and understanding device operations are core components for ultrasound guided intervention procedure training. All ultrasound machines share the common operative features and there are various buttons for the features in the device control panel. Ultrasound "knobology" refers to the thorough understanding of imaging optimization. This review addressed basic information for the transducers, depth setting, gain and focus control, different modes focusing on brightness and doppler modes.

Application of Ultrasound Tomography for Non-Destructive Testing of Concrete Structure (초음파 tomography를 응용한 콘크리트 구조물의 비파괴 시험에 관한 연구)

  • Kim, Young-Ki;Yoon, Young-Deuk;Yoon, Chong-Yul;Kim, Jung-Soo;Kim, Woon-Kyung;Song, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.1
    • /
    • pp.27-36
    • /
    • 2000
  • As a potential approach for non-destructive testing of concrete structures, we evaluate the time-of-flight (TOF) ultrasound tomography technique In conventional X ray tomography, the reconstructed Image corresponds to the internal attenuation coefficient However, in TOF ultrasound tomography, the reconstructed Image is proportional to the retractive index of the medium Because refractive effects are minimal for X-rays, conventional reconstruction techniques are applied to reconstruct the Image in X-ray tomography However, since ultrasound travels in curved path, due to the spatial variations in the refractive index of the medium, the path must be known to correctly reconstruct the Image. Algorithm for determining the ultrasound path is developed from a Geometrical Optics point view and the image reconstruction algorithm, since the paths are curved It requires the algebraic approach, namely the ART or the SIRT Here, the difference between the computed and the measured TOP data is used as a basis, for the iteration process First the initial image is reconstructed assuming straight paths. It then updates the path based on the recently reconstructed image This process of reconstruction and path determination repeats until convergence The proposed algorithm is evaluated by computer simulations, and in addition is applied to a real concrete structure.

  • PDF

Speckle Reduction based on Neuro-Fuzzy Technique (뉴로-퍼지를 이용한 스펙클 제거)

  • Kil, Se-Kee;Jeon, Yu-Yong;Oh, Hyung-Seok;Nishimura, Toshihiro;Kwon, Jang-Woo;Lee, Sang-Min
    • Journal of IKEEE
    • /
    • v.12 no.3
    • /
    • pp.158-166
    • /
    • 2008
  • Medical ultrasound has benefits in mobility and safety than any other medical techniques such as X-ray, CT and MRI but has speckle noise which decrease the ability of an observer to distinguish the fine details in diagnostic examination. But simple removing of speckle often causes losing boundary information. Then, in this paper, we presented a novel neuro-fuzzy method which could remove speckle efficiently without loss of boundary information. Proposed method consists of image clustering by fuzzy algorithm and image processingby neural networks which was learned by back propagation. From the experiments for simulation image and real ultrasound image, we could verify the proposed method.

  • PDF

The Proposal of Segmentation Algorithm for the Applying Breast Ultrasound Image to CAD (유방 초음파 영상의 CAD 적용을 위한 Segmentation 알고리즘 제안)

  • Koo, Lock-Jo;Jung, In-Sung;Bea, Jea-Ho;Choi, Sung-Wook;Park, Hee-Boong;Wang, Gi-Nam
    • IE interfaces
    • /
    • v.21 no.4
    • /
    • pp.394-402
    • /
    • 2008
  • The objective of this paper is to design segmentation algorithm for applying the breast ultrasound image to CAD(Computer Aided Diagnosis). This study is conducted after understanding limits, used algorithm and demands of CAD system by interviewing with a medical doctor and analyzing related works based on a general CAD framework that is consisted of five step-establishment of plan, analysis of needs, design, implementation and test & maintenance. Detection function of CAD is accomplished by Canny algorithm and arithmetic operations for segmentation. In addition to, long computing time is solved by extracting ROI (Region Of Interests) and applying segmentation technical methods based morphology algorithm. Overall course of study is conducted by verification of medical doctor. And validity and verification are satisfied by medical doctor's confirmation. Moreover, manual segmentation of related works, restrictions on the number of tumor and dependency of image resolution etc. was solved. This study is utilized as a support system aided doctors' subjective diagnosis even though a lot of future studies is needed for entire application of CAD system.

Speckle Noise Reduction and Edge Enhancement in Ultrasound Images Based on Wavelet Transform

  • Kim, Yong-Sun;Ra, Jong-Beom
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.122-131
    • /
    • 2008
  • For B-mode ultrasound images, we propose an image enhancement algorithm based on a multi-resolution approach, which consists of edge enhancing and noise reducing procedures. Edge enhancement processing is applied sequentially to coarse-to-fine resolution images obtained from wavelet-transformed data. In each resolution, the structural features of each pixel are examined through eigen analysis. Then, if a pixel belongs to an edge region, we perform two-step filtering: that is, directional smoothing is conducted along the tangential direction of the edge to improve continuity and directional sharpening is conducted along the normal direction to enhance the contrast. In addition, speckle noise is alleviated by proper attenuation of the wavelet coefficients of the homogeneous regions at each band. This region-based speckle-reduction scheme is differentiated from other methods that are based on the magnitude statistics of the wavelet coefficients. The proposed algorithm enhances edges regardless of changes in the resolution of an image, and the algorithm efficiently reduces speckle noise without affecting the sharpness of the edge. Hence, compared with existing algorithms, the proposed algorithm considerably improves the subjective image quality without providing any noticeable artifacts.

Medical Image Segmentation: A Comparison Between Unsupervised Clustering and Region Growing Technique for TRUS and MR Prostate Images

  • Ingale, Kiran;Shingare, Pratibha;Mahajan, Mangal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Prostate cancer is one of the most diagnosed malignancies found across the world today. American cancer society in recent research predicted that over 174,600 new prostate cancer cases found and nearly 31,620 death cases recorded. Researchers are developing modest and accurate methodologies to detect and diagnose prostate cancer. Recent work has been done in radiology to detect prostate tumors using ultrasound imaging and resonance imaging techniques. Transrectal ultrasound and Magnetic resonance images of the prostate gland help in the detection of cancer in the prostate gland. The proposed paper is based on comparison and analysis between two novel image segmentation approaches. Seed region growing and cluster based image segmentation is used to extract the region from trans-rectal ultrasound prostate and MR prostate images. The region of extraction represents the abnormality area that presents in men's prostate gland. Detection of such abnormalities in the prostate gland helps in the identification and treatment of prostate cancer

A Divide-Conquer U-Net Based High-Quality Ultrasound Image Reconstruction Using Paired Dataset (짝지어진 데이터셋을 이용한 분할-정복 U-net 기반 고화질 초음파 영상 복원)

  • Minha Yoo;Chi Young Ahn
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.118-127
    • /
    • 2024
  • Commonly deep learning methods for enhancing the quality of medical images use unpaired dataset due to the impracticality of acquiring paired dataset through commercial imaging system. In this paper, we propose a supervised learning method to enhance the quality of ultrasound images. The U-net model is designed by incorporating a divide-and-conquer approach that divides and processes an image into four parts to overcome data shortage and shorten the learning time. The proposed model is trained using paired dataset consisting of 828 pairs of low-quality and high-quality images with a resolution of 512x512 pixels obtained by varying the number of channels for the same subject. Out of a total of 828 pairs of images, 684 pairs are used as the training dataset, while the remaining 144 pairs served as the test dataset. In the test results, the average Mean Squared Error (MSE) was reduced from 87.6884 in the low-quality images to 45.5108 in the restored images. Additionally, the average Peak Signal-to-Noise Ratio (PSNR) was improved from 28.7550 to 31.8063, and the average Structural Similarity Index (SSIM) was increased from 0.4755 to 0.8511, demonstrating significant enhancements in image quality.

Analyzing Lung Cancer Using Statistical Feature Vector From Ultrasound Image (초음파 영상의 통계적 특징 벡터를 활용한 폐암 분류)

  • Ha, Soo-Hee;Yoo, Jae-Chern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.27-28
    • /
    • 2020
  • 본 논문에서는 초음파 영상의 통계적 특징벡터를 활용하여 폐암 분류를 제안한다. 폐암의 초음파 사진들을 비교 분석하여 각각의 label에 맞는 feature vector를 선별한다. 선택된 feature vector는 SVM을 이용하여 훈련 시킨 후, 최종적으로 폐암을 구별한다.

  • PDF

Development of an image processing system to detect automatically intimal and adventitial contours from intravascular ultrasound images (관상동맥 혈관내부 초음파 영상에서 내벽 및 외벽 윤곽선 자동추출을 위한 영상처리 알고리즘 개발)

  • Kim, H.S.;Dove, E.L.;Chandran, K.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.27-31
    • /
    • 1994
  • Intravascular ultrasound images of coranary artery contain very important informations on heart disease. The intimal contours on the image show informations and data to examine intravascular problems of patients. A new computation algorithm to detect the intimal and adventitial contours from the intravascular images was developed. An Image processing on gray level image was used. It uses arrays of pixels in each radial lines on the images. A "Robert" filter was adopted at first step for one dimensional image processing. Some other calculation techniques were developed to inclose the accuracy of automatically detected contours. The standard contour data to compare with automatically detected contour data were obtained through manually tracing by experienced cardiological medical doctors. The result of the new algorithm shows high accuracy of 80 % matching with the standard contour data.

  • PDF