Acknowledgement
본 연구는 정부의 재원으로 국가수리과학연구소(NIMS)와 한국연구재단(NRF)의 지원을 받아 수행하였음(NIMS-B24910000, NRF-2021R1A2C1010993). 초음파 영상 데이터 획득을 위해 수고해주신 Sonographer 김정 선생님께 감사의 뜻을 전합니다.
References
- Stock KF, Klein B, Steubl D, Lersch C, Heemann U, Wagenpfeil S, Eyer F, Clevert DA. Comparison of a pocket-size ultrasound device with a premium ultrasound machine: diagnostic value and time required in bedside ultrasound examination. Abdominal Imag. 2015;40(7):2861-6. https://doi.org/10.1007/s00261-015-0406-z
- Nelson BP, Sanghvi A. Out of hospital point of care ultrasound: Current use models and future directions. Eur J Trauma Emergency Surgery. 2016;42(2):139-50. https://doi.org/10.1007/s00068-015-0494-z
- Tasinkiewicz J, 3D System Aperture Imaging Method in Spectrum Domain for Low-Cost Portable Ultrasound Systems. Arch. Acoust. 2023;48(4):559-72.
- https://ultrasoundenhance2023.grand-challenge.org/
- Zhou Z, Guo Y, Wang Y. Handheld Ultrasound Video High-Quality Reconstruction Using a Low-Rank Representation Multipathway Generative Adversarial Network. IEEE Trans Neural Netw Learn Syst. 2021;32(2):575-88. https://doi.org/10.1109/TNNLS.2020.3025380
- Michailovich OV, Tannenbaum A. Despeckling of medical ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(1):64-78. https://doi.org/10.1109/TUFFC.2006.1588392
- Coupe P, Hellier P, Kervrann C, Barillot C. Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans Image Process. 2009;18(10):2221-9. https://doi.org/10.1109/TIP.2009.2024064
- Hyun D, Brickson LL, Looby KT, Dahl JJ. Beamforming and Speckle Reduction Using Neural Networks. IEEE Trans Ultrason Ferroelectr Freq Control. 2019;66(5):898-910. https://doi.org/10.1109/TUFFC.2019.2903795
- Lan Y, Zhang X. Real-Time Ultrasound Image Despeckling Using Mixed-Attention Mechanism Based Residual UNet. IEEE Access. 2020;8:195327-40. https://doi.org/10.1109/ACCESS.2020.3034230
- Moinuddin M, Khan S, Alsaggaf AU, Abdulaal MJ, Al-Saggaf UM, Ye JC. Medical ultrasound image speckle reduction and resolution enhancement using texture compensated multi-resolution convolution neural network. Front Physiol. 2022;13:961571.
- Karaoglu O, Bilge HS, Uluer I. Removal of speckle noises from ultrasound images using five different deep learning networks. Int J Eng Sci Technol. 2022;29:101030.
- Skandarani Y, Jodoin P-M, Lalande A. GANs for Medical Image Synthesis: An Empirical Study. J. Imaging. 2023;9(3):69.
- Zagzebski JA, Essentials of ultrasound physics. Maryland Heights: Mosby; 1996. pp. 45-65.
- Jang J, Ahn CY. Industrial Mathematics in Ultrasound Imaging. J Ksiam. 2016;20(3):175-202. https://doi.org/10.12941/jksiam.2016.20.175
- Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer, 2015; 9351:234-41.
- Hu X, Naiel MA, Wong A, Lamm M, Fieguth P, editors. RU-Net: A robust UNet architecture for image super-resolution. Conf Proc IEEE/CVF Computer Vision and Pattern Recognition Workshops. 2019.