• 제목/요약/키워드: Ultrasonic treatment

검색결과 531건 처리시간 0.027초

Field Experiments of Consolidant and Filler for Stone Cultural Heritage: Primary Verification Using Ultrasonic Velocity (석조문화재 적용을 위한 강화제 및 충전제 현장실험 : 초음파 속도를 이용한 일차검증)

  • Song, Chi-Young;Jun, Byung-Kyu;Han, Min-Su;Lee, Jang-Jon;Kim, Sa-Dug
    • Journal of Conservation Science
    • /
    • 제25권1호
    • /
    • pp.87-100
    • /
    • 2009
  • We carried out the effect verification of conservation treatment focusing on basement rock of alkali granite at the Yukjonbul (two-pairs of Buddha Triads) carved on rock cliff of Samneung valley in Namsan mountain of Gyeongju. The conservation treatments were used to ethylsilicate-type rock consolidant and epoxy-type resin. It is treatment method that the epoxy-type resin have been applied one time into the exfoliation area, after rock consolidation treatment have been worked for three times. As the result of measuring ultrasonic velocity, P-wave velocity of the exfoliation area was relatively increased after applied the conservation treatments. The ultrasonic velocity of all area was increased as 27.8%. This result has been proved with consolidation effects by consolidant and filler for stone cultural heritages. The treatment method should be worked about three time to consolidate sufficiently for rocks.

  • PDF

Ultrasonic Nonlinearity of AISI316 Austenitic Steel Subjected to Long-Term Isothermal Aging (장시간 등온열화된 AISI316 오스테나이트강의 초음파 비선형성)

  • Gong, Won-Sik;Kim, ChungSeok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제34권3호
    • /
    • pp.241-247
    • /
    • 2014
  • This study presents the ultrasonic nonlinearity of AISI316 austenitic stainless steels subjected to longterm isothermal aging. These steels are attractive materials for use in industrial mechanical structures because of their strength at high-temperatures and their chemical stability. The test materials were subjected to accelerated heat-treatment in an electrical furnace for a predetermined aging duration. The variations in the ultrasonic nonlinearity and microstructural damage were carefully evaluated through observation of the microstructure. The ultrasonic nonlinearity stiffly dropped after aging for up to 1000 h and, then, monotonously decreased. The polygonal shape of the initial grain structures changed to circular, especially as the annealing twins in the grains dissolved and disappeared. The delta ferrite on the grain boundaries could not be observed at 1000 h of aging, and these continuously transformed into their sigma phases. Consequently, in the intial aging period, the rapid decrease in the ultrasonic nonlinearity was caused by voids, dislocations, and twin annihilation. The continuous monotonic decrease in the ultrasonic nonlinearity after the first drop resulted from the generation of $Cr_{23}C_6$ precipitates and ${\sigma}$ phases.

Development of experimental water level measuring device using an Arduino and an ultrasonic sensor (아두이노와 초음파 센서를 이용한 실험용 수위 측정 장치 개발)

  • Yoo, Moonsung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제18권4호
    • /
    • pp.143-147
    • /
    • 2018
  • Water levels are measured in various fields such as sewage treatment plants, water treatment plants, rivers, dams, factory storages' tanks. Ultrasonic instruments for water level measurement are expensive and are used for industrial field. Rapid advances in electronics have made it possible to build a wide variety of measurement, monitoring and control functions at low cost. This study was started to make ultrasonic level measurement system at low price. The system was constructed with an Arduino, an ultrasonic sensor and a temperature sensor for use in the experiment. The ultrasonic sensor measures the time from the sensor to the liquid surface. The temperature sensor measures the atmospheric temperature and improves the accuracy of the ultrasonic distance measurement by correcting the sound speed. Arduino controls measurements and calculates the water level. All components of the system are assembled into a device holder. Experiments with this system show that the water level measured by the system is very close to the actual value. This system is also inexpensive and easy to install and maintain, making it suitable for laboratory use.

Ultrasonic Osteotome Assisted Posterior Endoscopic Cervical Foraminotomy in the Treatment of Cervical Spondylotic Radiculopathy Due to Osseous Foraminal Stenosis

  • Ye Jiang;Chen Li;Lutao Yuan;Cong Luo;Yuhang Mao;Yong Yu
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권4호
    • /
    • pp.426-437
    • /
    • 2023
  • Objective : To investigate the efficacy and safety of the posterior endoscopic cervical foraminotomy (PECF) using ultrasonic osteotome for the treatment of cervical osseous foraminal stenosis, focusing on introduction of the advantages of ultrasonic osteotome in partial pediculectomy and ventral osteophyte resection in PECF. Methods : Nineteen patients with cervical osseous foraminal stenosis who underwent PECF using ultrasonic osteotome in our institution between April 2018 and April 2021 were enrolled in this study. All the patients were followed up more than 12 months. The patients' medical data, as well as pre- and postoperative radiologic findings were thoroughly investigated. The visual analogue score (VAS), Japanese Orthopaedic Association (JOA) score, cervical dysfunction index (Neck disability index, NDI), and modified MacNab criteria were used to assess the surgical efficacy. Results : All the patients were successfully treated with PECF using ultrasonic osteotome. The pre- and postoperative VAS, NDI, and JOA scores were significantly improved (p<0.05). According to the modified MacNab criteria, 17 patients were assessed as "excellent", two patients were assessed as "good" at the last follow-up. There was no dura tear, nerve root damage, incision infection, neck deformity, or other complications. Conclusion : Adequate nerve root decompression can be accomplished successfully with the help of ultrasonic osteotome in PECF, which has the advantage of reducing the probability of damage to the nerve root and dura mater, in addition to the original merits of endoscopic surgery.

Development of Complex Module Device for Odor Reduction in Sewage

  • KIM, Young-Do;JEONG, Tae-Hwan;Kim, Su-Hye;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • 제5권4호
    • /
    • pp.51-56
    • /
    • 2022
  • Purpose: By applying an ultrasonic mechanical device to the liquid fertilizer storage in the pig dropping treatment plant, the initial odor of the odor source is reduced, and the air dilution drainage of the complex odor is fundamentally recognized to facilitate odor treatment on the mechanical and chemical biological treatment devices at the rear. Research design, data and methodology: The odor concentration on the site boundary was measured to confirm the state of reduction. In order to prevent the spread of odor from the collection of the pig dropping treatment plant, it was measured by installing an ultrasonic generator inside the installation wall after installing the sealing wall. Results: The average value of the March and April measurement data remained close to neutral at 8.2 after 8.6 treatment before pH treatment, decreased 97.3% from 462 mg/L before SS treatment to 10.5 mg/L after treatment, and the composite odor was reduced by 85% from 20 to 3 before treatment. It was confirmed that ammonia (NH3) was reduced by 99% from 5.8 ppm to 0.09 ppm, and general bacteria were also reduced by 99% from 3,200 CFU/mL to 57 CFU/mL Conclusion: Applying the ultrasonic air ejector hybrid system and zigzag air complex module development product to resource circulation centers or sewage treatment facilities is thought to reduce inconvenience to residents due to odors caused.

Correlation between Ultrasonic Nonlinearity and Elastic Nonlinearity in Heat-Treated Aluminum Alloy

  • Kim, Jongbeom;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제37권2호
    • /
    • pp.115-121
    • /
    • 2017
  • The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke's equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at $300^{\circ}C$ for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke's equation. The results showed that the variations in these parameters were in good agreement with each other.

Ultrasonic Engancement of Flow in Clayey Sands (점토질 모래에서의 Ultrasonic을 이용한 투수성의 증진)

  • 이광열
    • Water for future
    • /
    • 제26권1호
    • /
    • pp.63-69
    • /
    • 1993
  • Remediation technology becomes an issue in environmental engineering. The vibro-recovery technique is one of popular means to remove pollutants from contaminated soils and groundwater. Using Ultrasonic excitation in soil-fluid medium, it was found that removal efficiency in a mechanical effects was significant. In this paper, therefore, laboratory experiments were conducted on clayey sand soil columns using a probe-type ultrasonic processor. Ultrasonic treatment with simultaneous pumping enhances dislodgement of clay particles, and ultrasonic excitation reduced the proportions of finer particles and thus result in increased hydraulic conductivity significantly. Also, the results provided the changes in grain size distribution curve of the soil due to ultrasonic excitation. The results indicated that the maximum size of particles mobilized by Ultrasonic is about 0.004mm and particles in the size range from 0.04mm to 1.0mm were subjected to fracturing. The economic feasibility of Ultrasonic implementation is considered in power requirement of the generator and maintenance of the horn. At a specified amplitude of vibrations, the power requirement of the generator depends on overburden pressure of the horn, temperature and viscosity of fluid in the soil medium. For comparisons, the requirement of a one inch and two inch diameter horn sonicators are compared with the power required for pumping water from different depths.

  • PDF

Numerical Model for SBR Aerobic Digestion Combined with Ultrasonication and Parameter Calibration (초음파 결합형 SBR 호기성 소화의 모델과 매개변수의 보정)

  • Kim, Sunghong;Lee, Inho;Yun, Jeongwon;Lee, Dongwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제27권4호
    • /
    • pp.457-468
    • /
    • 2013
  • Based on the activated sludge model(ASM), a mathematical model which represents the aerobic sludge digestion by sequencing batch reactor(SBR) combined with ultrasonic treatment was composed and performed in this study. Aerobic digestion using sequencing batch reactor(SBR) equipped with ultrasound treatment was also experimented for the purpose of parameter calibration. Most of the presented kinetic parameters in ASM or ASM2 could be used for the aerobic digestion of sludge but the parameters related in hydrolysis and decay rate needed modification. Hydrolysis rate constant of organic matter in aerobic condition was estimated at $0.3day^{-1}$ and the maximum growth rate for autotrophs in aerobic condition was $0.618day^{-1}$. Solubilization reactions of particulate organics and nitrogen by ultrasonication was added in this kinetic model. The solubilization rate is considered to be proportional to the specific energy which is defined by specific ultrasound power and sonication time. The solubilization rate constant by ultrasonication was estimated at $0.202(W/L)^{-1}day^{-1}$ in this study. Autotrophs as well as heterotrophs also decomposed by ultrasonic treatment and the nitrification reaction was limited by the lack of autotrophs accumulation in the digester.

Clinical and Electromyographic Study of the Effects of Ultrasonic Wave and Microwave Diathermy Treatment on the Craniomandibular Disorder Patients (두개하악장애 환자에 대한 초음파와 극초단파 심부투열치료 효과의 임상 및 근전도학적 연구)

  • Hye-Jin Lee;Myung-Yun Ko
    • Journal of Oral Medicine and Pain
    • /
    • 제16권1호
    • /
    • pp.103-111
    • /
    • 1991
  • This study was performed to observe the effect of micro-wave diathermy and ultrasonic-wave diathermy on the craniomandibular disorder patients. 19 patients were classified into 12 acute and 7 chronic groups according to the duration of 6 months. They were treated with micro-wave diathermy and ultrasonic-wave diathermy for 2 weeks and pain, maximum comfortable opening, active range of motion were checked before and after therapy. Electromyographic activities of temporal and masseter muscles were also measured at physiologic rest position, clenching and mastication before and after therapy. The obtained results were as follows : 1. After treatment, pain were reduced and active range of motion and maximum comfortable opening were increased. 2. Temporoal and masseter muscle activities of post-treatment in rest position, clenching and mastication were lower than those of pre-treatment. 3. In rest position, temporal and masseter muscle activities of pre-treatment on affected sides were higher than those on unaffected sides, but there were no differences in muscle activities between affected ad unaffected sides on clenching and mastication in pre and post-treatment respectively. 4. There were no significant differences in active range of motion, pain and maximum comfortable opening between acute and chronic groups in pre and post-treatment but there were significant differences between pre-treatment and post-treatment in acute and chronic groups respectively. 5. Muscle activities of masseter and temporal muscles in acute and chronic patients were reduced in rest position after treatment.

  • PDF

Effect of Solution Compositions on Properties of Ni-Fe Nano Thin Film and Wire Made by Electrodeposition Method (Electrodeposition법으로 제조한 Ni-Fe 나노박막 및 나노선의 특성에 미치는 용액 조성의 영향)

  • Koo, Bon-Keup
    • Journal of the Korean institute of surface engineering
    • /
    • 제43권5호
    • /
    • pp.243-247
    • /
    • 2010
  • The micro Vickers hardness and internal stress of Ni-Fe metal thin film synthesized by electrodeposition method at $25^{\circ}C$ were studied as a function of bath composition, and surface microstructure and atomic compositions of thin films were investigated by SEM and EDS. And the shape change of $200\;{\AA}$ Ni-Fe nanowires made using anodic aluminum oxide(AAO) templates by electrodeposition method were observed by SEM as a function of ultrasonic treatment time and bath composition. The Fe deposition contents on the substrate non-linearly increased with Fe ion concentration over total metal ion concentration. In case of low Fe contents film, the grain size is smaller and denser than high Fe contents deposited films, and the micro Vickers hardness increased with Fe contents of electrodeposited films. These results affected the shape change of nanowire after ultrasonic treatments.