• 제목/요약/키워드: Ultrasonic guided waves

검색결과 99건 처리시간 0.025초

Monitoring degradation in concrete filled steel tubular sections using guided waves

  • Beena, Kumari;Shruti, Sharma;Sandeep, Sharma;Naveen, Kwatra
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.371-382
    • /
    • 2017
  • Concrete filled steel tubes are extensively applied in engineering structures due to their resistance to high tensile and compressive load and convenience in construction. But one major flaw, their vulnerability to environmental attack, can severely reduce the strength and life of these structures. Degradation due to corrosion of steel confining the concrete is one of the major durability problems faced by civil engineers to maintain these structures. The problem accelerates as inner surface of steel tube is in contact with concrete which serves as electrolyte. If it remains unnoticed, it further accelerates and can be catastrophic. This paper discusses a non-destructive degradation monitoring technique for early detection corrosion in steel tubes in CFST members. Due to corrosion, damage in the form of debonding and pitting occurs in steel sections. Guided ultrasonic waves have been used as a feasible and attractive solution for the detection and monitoring of corrosion damages in CFST sections. Guided waves have been utilized to monitor the effect of notch and debond defects in concrete filled steel tubes simulating pitting and delamination of steel tubes from surrounding concrete caused by corrosion. Pulse transmission has been used to monitor the healthy and simulated damaged specimens. A methodology is developed and successfully applied for the monitoring of concrete filled steel tubular sections undergoing accelerated chloride corrosion. The ultrasonic signals efficiently narrate the state of steel tube undergoing corrosion.

비접촉 Lamb-EMAT를 이용한 두께감육 평가에 관한 연구 (Non-contact Ultrasonic Technique for the Thin Defect Evaluation by the Lamb-EMAT)

  • 김태형;박익근;이철구;김용권;김현묵;조용상
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.194-196
    • /
    • 2005
  • Ultrasonic guided waves are gaining increasing attention for the inspection of platelike and rodlike structures. At the same time, inspection methods that do not require contact with the test piece are being developed for advanced applications. This paper capitalizes on recent advances in the areas of guided wave ultrasonics and noncontact ultrasonics to demonstrate a superior method for the nondestructive detection of thinning defects simulating hidden corrosion in thin aluminum plates. The proposed approach uses EMAT(electro-magnetic acoustic transducer) for the noncontact generation and detection of guided plate waves. Interesting features in the dispersive behavior of selected guided modes are used for the detection of plate thinning. It is shown that mode cutoff measurements provide a qualitative detection of thinning defects. Measurement of the mode group velocity can be also used to quantify of thinning depth.

  • PDF

Sensing properties of optical fiber sensor to ultrasonic guided waves

  • Zhou, Wensong;Li, Hui;Dong, Yongkang;Wang, Anbang
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.471-484
    • /
    • 2016
  • Optical fiber sensors have been proven that they have the potential to detect high-frequency ultrasonic signals, in structural health monitoring field which generally refers to acoustic emission signals from active structural damages and guided waves excited by ultrasonic actuators and propagating in waveguide. In this work, the sensing properties of optical fiber sensors based on Mach-Zehnder interferometer were investigated in the metal plate. Analytical formulas were conducted first to explore the parameters affecting its sensing performances. Due to the simple and definable frequency component, the Lamb wave excited by the piezoelectric wafer was employed to study the sensitivity of the proposed optical fiber sensors with respect to the frequency, rather than the acoustic emission signals. In the experiments, according to above investigations, spiral shape optical fiber sensors with different size were selected to increase their sensitivity. Lamb waves were excited by a circular piezoelectric wafer, while another piezoelectric wafer was used to compare their voltage responses. Furthermore, by changing the excitation frequency, the tuning frequency characteristic of the proposed optical fiber sensor was also investigated experimentally.

Analysis of the Propagation Characteristics of Ultrasonic Guided Waves Excited by Single Frequency and Broadband Sources

  • Kang, To;Song, Sung-Jin;Kim, Hak-Joon;Cho, Young-Do;Lee, Dong-Hoon;Cho, Hyun-Joon
    • 비파괴검사학회지
    • /
    • 제29권6호
    • /
    • pp.570-578
    • /
    • 2009
  • Excitation and propagation of guided waves are very complex problems in pipes due to their dispersive nature. Pipes are commonly used in the oil, chemical or nuclear industry and hence must be inspected regularly to ensure continued safe operation. The normal mode expansion(NME) method is given for the amplitude with which any propagating waveguide mode is generated in the pipes by applied surface tractions. Numerical results are calculated based on the NME method using different sources, i.e., non-axisymmetric partial loading and quasi-axisymmetric loading sources. The sum of amplitude coefficients for 0~nineth order of the harmonic modes are calculated based on the NME method and the dispersion curves in pipes. The superimposed total field which is namely the angular profile, varies with propagating distance and circumferential angle. This angular profile of guided waves provides information for setting the transducer position to find defects in pipes.

전자기유도초음파를 이용한 복수기 전열관 결함신호 특성분석 (Characteristic Analysis of Electromagnetic-ultrasonic Guided Waves for Defect Signals in Condenser Tubes)

  • 최상훈;왕지남
    • 설비공학논문집
    • /
    • 제27권3호
    • /
    • pp.174-178
    • /
    • 2015
  • This paper describes a signal processing technique for identifying signals from defects by using an electromagnetic-ultrasonic guided waves method based on a magnetostrictive sensor that generates a torsional mode (T(0, 1)). Because this technique is based on the digital filtering, the filtered signals provide information on the relationship between the cutoff frequency of band-pass filter and the characteristic of defect signals in heat exchange tubes. To verify the performance of the technique, artificial defects with various thickness reduction ration and shape were machined in titanium tubes, and digital filtering results are reported. The results show that digital filtering provides information to the identify shape of defects and the contact condition between the tube and support ring. Therefore, the proposed technique has good potential as a tool for evaluating the integrity of heat exchange tubes.

Quantitative corrosion imaging of pipelines using multi helical guided ultrasonic waves

  • Dehghan-Niri, Ehsan;Salamone, Salvatore
    • Structural Monitoring and Maintenance
    • /
    • 제3권3호
    • /
    • pp.215-232
    • /
    • 2016
  • This paper presents a multi helical ultrasonic imaging approach for quantitative corrosion damage monitoring of cylindrical structures. The approach consists of two stages. First a multi helical ultrasonic imaging (MHUI) algorithm is used to provide qualitative images of the structure of interest. Then, an optimization problem is solved in order to obtain quantitative damage information, such as thickness map. Experimental tests are carried out on a steel pipe instrumented with six piezoelectric transducers to validate the proposed approach. Three thickness recesses are considered to simulate corrosion damage. The results show the efficiency of the proposed approach for quantifying corrosion location, area and remnant thickness.

유도초음파를 이용한 판 구조물 CT 영상화 기법 (Investigation of CT Imaging Technique Using Guided Wave)

  • 윤현우;강토;김학준;송성진;신호상
    • 한국가스학회지
    • /
    • 제15권3호
    • /
    • pp.11-18
    • /
    • 2011
  • 유도초음파는 구조물의 장거리 탐상에 널리 사용되고 있으며 탐촉자의 중심주파수와 판의 두께에 따라 유도 초음파의 군속도가 바뀌는 어려움으로 인하여 최근에 많은 연구자들에 의해 유도초음파를 이용한 판과 같은 구조물 진단에 토모그래피 영상화기법에 관심을 기울이고 있다. 기존에 개발된 영상화 기법으로는 Delay and Sum영상화 기법이 있으며, 수 년간 판 구조물 영상화 기법의 알고리즘으로 이용되었다. MVDR(Minimum Variance Distortionless Response) 영상화 기법은 초음파의 산란특성을 고려한 영상화 기법으로써, 빔의 특성이 영상화 알고리즘에 적용되어 Delay and Sum 영상화 기법보다 향상된 영상을 판구조물에 존재하는 홀 결함 영상을 통해 비교 분석하였다.

Application of principal component analysis and wavelet transform to fatigue crack detection in waveguides

  • Cammarata, Marcello;Rizzo, Piervincenzo;Dutta, Debaditya;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • 제6권4호
    • /
    • pp.349-362
    • /
    • 2010
  • Ultrasonic Guided Waves (UGWs) are a useful tool in structural health monitoring (SHM) applications that can benefit from built-in transduction, moderately large inspection ranges and high sensitivity to small flaws. This paper describes a SHM method based on UGWs, discrete wavelet transform (DWT), and principal component analysis (PCA) able to detect and quantify the onset and propagation of fatigue cracks in structural waveguides. The method combines the advantages of guided wave signals processed through the DWT with the outcomes of selecting defect-sensitive features to perform a multivariate diagnosis of damage. This diagnosis is based on the PCA. The framework presented in this paper is applied to the detection of fatigue cracks in a steel beam. The probing hardware consists of a PXI platform that controls the generation and measurement of the ultrasonic signals by means of piezoelectric transducers made of Lead Zirconate Titanate. Although the approach is demonstrated in a beam test, it is argued that the proposed method is general and applicable to any structure that can sustain the propagation of UGWs.