Browse > Article
http://dx.doi.org/10.12989/smm.2016.3.3.215

Quantitative corrosion imaging of pipelines using multi helical guided ultrasonic waves  

Dehghan-Niri, Ehsan (Department of Civil, Structural and Environmental Engineering, University at Buffalo)
Salamone, Salvatore (Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin)
Publication Information
Structural Monitoring and Maintenance / v.3, no.3, 2016 , pp. 215-232 More about this Journal
Abstract
This paper presents a multi helical ultrasonic imaging approach for quantitative corrosion damage monitoring of cylindrical structures. The approach consists of two stages. First a multi helical ultrasonic imaging (MHUI) algorithm is used to provide qualitative images of the structure of interest. Then, an optimization problem is solved in order to obtain quantitative damage information, such as thickness map. Experimental tests are carried out on a steel pipe instrumented with six piezoelectric transducers to validate the proposed approach. Three thickness recesses are considered to simulate corrosion damage. The results show the efficiency of the proposed approach for quantifying corrosion location, area and remnant thickness.
Keywords
corrosion; guided waves; imaging algorithms;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Belanger, P. (2009), Feasibility of thickness mapping, Imperial College London.
2 Belanger, P. and Cawley, P. (2008), "Lamb wave tomography to evaluate the maximum depth of corrosion patches", AIP Conf. Proc.
3 Belanger, P. and Cawley, P. (2009), "Feasibility of low frequency straight-ray guided wave tomography", NDT& E Int., 42, 113-119. doi: 10.1016/j.ndteint.2008.10.006   DOI
4 Belanger, P., Cawley, P. and Simonetti, F. (2010), "Guided wave diffraction tomography within the born approximation", IEEE T. Ultrason Ferr., 57, 1405-1418. doi: 10.1109/TUFFC.2010.1559   DOI
5 Brondel, D., Edwards, R., Hayman. A. et al. (1994), "Corrosion in the Oil Industry", Oilf Rev 4-18. doi: 10.1021/ie50320a006
6 Ciampa, F., Pickering, S., Scarselli, G. et al. (2014), "Nonlinear elastic tomography using sparse array measurements", to cite this version 7th Eur. work. struct", Struct Health. Monit., Nantes, Fr., 1878-1885.
7 Dehghan-Niri, E. and Salamone, S. (2014), "A multi-helical ultrasonic imaging approach for the structural health monitoring of cylindrical structures", Struct. Health Monit., 14, 73-85. doi: 10.1177/1475921714548937
8 Dehghan-niri, E., Zahrai, S.M. and Mohtat, A. (2010), "Effectiveness-robustness objectives in MTMD system design : An evolutionary optimal design methodology", Struct Control Heal Monit., 218-236. doi: 10.1002/stc
9 Flynn, E.B., Todd, M.D., Wilcox, P.D. et al. (2011), "Maximum-likelihood estimation of damage location in guided-wave structural health monitoring", Proc. R. Soc. A. Math. Phys. Eng. Sci., 467, 2575-2596. doi: 10.1098/rspa.2011.0095   DOI
10 Gao, H., Shi, Y. and Rose, J.L. (2005), "Guided wave tomography on an aircraft wing with leave in place sensors", AIP Conf. Proc.
11 Hall, J.S., Fromme, P. and Michaels, J.E. (2011), "Ultrasonic guided wave imaging for damage characterization", Proceedings of the Aicr. Airworth. Sust. Conf.
12 Hinders, M., Malyarenko, E. and McKeon, J. (1998), "Contact scanning Lamb wave tomography", J. Acoust. Soc. Am., 104, http://dx.doi.org/10.1121/1.423524.
13 Huthwaite, P., Ribichini, R., Cawley, P. and Lowe, M.J.S. (2013), "Mode selection for corrosion detection in pipes and vessels via guided wave tomography", IEEE T. Ultrason Ferroelectr Freq Control 60, 1165-1177. doi: 10.1109/TUFFC.2013.2679   DOI
14 Huthwaite, P. and Simonetti, F. (2013), "High-resolution guided wave tomography", Wave Motion, 50, 979-993. doi: 10.1016/j.wavemoti.2013.04.004   DOI
15 Jansen, D.P. and Hutchins, D.A. (1990), "Wave tomography", Ultrason. Symp., 1017-1020.
16 Kolda, T.G., Lewis, R.M. and Torczon, V. (2003), "Optimization by direct search: New perspectives on some classical and modern methods", SIAM Rev., 45, 385-482. doi: 10.1137/S003614450242889   DOI
17 Leonard, K.R. and Hinders, M.K. (2003), "Guided wave helical ultrasonic tomography of pipes", J. Acoust. Soc. Am., 114,767. doi: 10.1121/1.1593068   DOI
18 Leonard, K.R. and Hinders, M.K. (2005a), "Lamb wave tomography of pipe-like structures", Ultrasonics, 43, 574-583. doi: 10.1016/j.ultras.2004.12.006   DOI
19 Leonard, K.R. and Hinders, M.K. (2005b), "Multi-mode Lamb wave tomography with arrival time sorting", J. Acoust. Soc. Am., 117, 2028. doi: 10.1121/1.1867792   DOI
20 Li, J. and Rose, J.L. (2006), "Natural beam focusing of non-axisymmetric guided waves in large-diameter pipes", Ultrasonics, 44, 35-45. doi: 10.1016/j.ultras.2005.07.002   DOI
21 Lu, Y. and Michaels, J.E. (2005), "A methodology for structural health monitoring with diffuse ultrasonic waves in the presence of temperature variations", Ultrasonics, 43, 717-731. doi: 10.1016/j.ultras.2005.05.001   DOI
22 Nagy, P.B., Simonetti, F. and Instanes, G. (2014), "Corrosion and erosion monitoring in plates and pipes using constant group velocity Lamb wave inspection", Ultrasonics, 54, 1832-1841. doi: 10.1016/j.ultras.2014.01.017   DOI
23 Pierce, A.D. and Kil, H.G. (1990), "Elastic wave propagation from point excitations on thin-walled cylindrical shells", J. Vib. Acoust., 112, 399. doi: 10.1115/1.2930524   DOI
24 Qing, X.P., Beard, S., Shen, S.B. et al. (2009) "Development of a real-time active pipeline integrity detection system", Smart Mater. Struct., 18, 115010. doi: 10.1088/0964-1726/18/11/115010   DOI
25 Willey, C.L., Simonetti, F., Nagy, P.B. and Instanes, G. (2014), "Guided wave tomography of pipes with high-order helical modes", NDT& E Int., 65, 8-21. doi: 10.1016/j.ndteint.2014.03.010   DOI
26 Zhao, X., Gao, H., Zhang, G. et al. (2007), "Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring", Smart Mater Struct., 16, 1208-1217. doi: 10.1088/0964-1726/16/4/032   DOI