• Title/Summary/Keyword: Ultrasonic energy

Search Result 647, Processing Time 0.025 seconds

A bond graph approach to energy efficiency analysis of a self-powered wireless pressure sensor

  • Cui, Yong;Gao, Robert X.;Yang, Dengfeng;Kazmer, David O.
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.1-22
    • /
    • 2007
  • The energy efficiency of a self-powered wireless sensing system for pressure monitoring in injection molding is analyzed using Bond graph models. The sensing system, located within the mold cavity, consists of an energy converter, an energy modulator, and a ultrasonic signal transmitter. Pressure variation in the mold cavity is extracted by the energy converter and transmitted through the mold steel to a signal receiver located outside of the mold, in the form of ultrasound pulse trains. Through Bond graph models, the energy efficiency of the sensing system is characterized as a function of the configuration of a piezoceramic stack within the energy converter, the pulsing cycle of the energy modulator, and the thicknesses of the various layers that make up the ultrasonic signal transmitter. The obtained energy models are subsequently utilized to identify the minimum level of signal intensity required to ensure successful detection of the ultrasound pulse trains by the signal receiver. The Bond graph models established have shown to be useful in optimizing the design of the various constituent components within the sensing system to achieve high energy conversion efficiency under a compact size, which are critical to successful embedment within the mold structure.

The new approach to calculate pulse wave returning energy vs. mechanical energy of rock specimen in triaxial test

  • Heidari, Mojtaba;Ajalloeian, Rassoul;Fard, Akbar Ghazi;Isfahanian, Mahmoud Hashemi
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.253-266
    • /
    • 2021
  • In this paper, we discuss a mathematical method for determining the return energy of the wave from the sample and comparing it with the mechanical energy consumed to change the dimension of the sample in the triaxial test of the rock. We represent a method to determine the mechanical energy and then we provide how to calculate the return energy of the wave. However, the static energy and pulse return energy will show higher amounts with axial pressure increase. Three types of clastic sedimentary rocks including sandstone, pyroclastic rock, and argillitic tuff were selected. The sandstone showed the highest strength, Young's modulus and ultrasonic P and S waves' velocities versus others in the triaxial test. Also, from the received P wavelet, the calculated pulse wave returning energy indicated the best correlation between axial stress compared to wave velocities in all specimens. The fact that the return energy decreases or increases is related to increasing lateral stress and depends on the geological characteristics of the rock. This method can be used to determine the stresses on the rock as well as its in-situ modulus in projects that are located at high depths of the earth.

Feasibility Study on Ultrasonic Waveguide Sensor for Under-Sodium Viewing of Reactor Internals in Sodium-Cooled Fast Reactor (소듐냉각고속로 원자로 내부구조물의 소듐내부가시화를 위한 웨이브가이드 초음파센서의 적용 가능성 연구)

  • Joo, Young-Sang;Lim, Sa-Hoe;Park, Chang-Gyu;Lee, Jae-Han
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.364-371
    • /
    • 2008
  • Ultrasonic waveguide sensor has been developed for under-sodium viewing of reactor internal structures of a sodium-cooled fast reactor (SFR). The structure design concept of a waveguide sensor assembly was suggested and evaluated for the application in SFR. A 10 m long ultrasonic waveguide sensor assembly has been manufactured and the experimental feasibility tests were carried out. The 10 m long distance propagation performance of zero-order antisymmetric $A_0$ Lamb wave has been verified. The feasibility of ultrasonic waveguide sensor has been demonstrated by the C-scanning resolution performance test.

A Defect Detection of Thin Welded Plate using an Ultrasonic Infrared Imaging (초음파 열화상 검사를 이용한 박판 용접시편의 결함 검출)

  • Cho, Jai-Wan;Chung, Chin-Man;Choi, Young-Soo;Jung, Seung-Ho;Jung, Hyun-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1060-1066
    • /
    • 2007
  • When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material efficiently. In this paper a detection of the welding defect of thin SUS 304 plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (20kHz) ultrasonic transducer was used to infuse the welded thin SUS 304 plates with a short pulse of sound for 280ms. The ultrasonic source has a maximum power of 2kW. The surface temperature of the area under inspection is imaged by a thermal infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the defect tip and heated up highly, are observed. From the sequence of the thermosonic images, the location of defective or inhomogeneous regions in the welded thin SUS 304 plates can be detected easily.

A Study on Flow Characteristics with Ultrasonic Forcing in a Coaxial Circular Pipe by PIV Measurement (동심원관내에서 초음파가 가진된 유동특성의 PIV계측에 의한 연구)

  • Koo, J.H.;Park, Y.H.;Choi, W.C.;Song, M.G.;Ju, E.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.639-644
    • /
    • 2000
  • An experiment on the enhancement of turbulent flow with ultrasonic forcing was carried out by using PIV measurement in a coaxial circular pipe which could offer characteristics of the turbulence flow plentifully through its jet. A large transparent acryl tank and a coaxial circular pipe nozzle were made for the above research. city water of $25^{\circ}C$ was selected as an experimental liquid and the front flow field of the coaxial circular pipe was divided vertically as 3 measuring regions to observe characteristics of flow phenomena. characteristics of fluid flow such as velocity vector distribution, kinetic energy, turbulent intensity and etc. were visualized, observed, examined and considered at 5 kinds of Re No. such as $Re=1{\times}10^3,\;2{\times}10^3,\;3{\times}10^3,\;5{\times}10^3,\;1{\times}10^4$. In result it was proved that ultrasonic vibration affected the enhancement of turbulent flow.

  • PDF

Evaluation of the Residual Performance of Partially Charred Components of Old Wooden Structure I - Use of Ultrasonic Velocity and Testing of the Drilling Resistance -

  • Lee, Hyun-Mi;Hwang, Won-Joung;Lee, Dong-Heub;Kim, Hong Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.193-206
    • /
    • 2014
  • Residual performance of old architectural wood which has been damaged was measured using Nondestructive Evaluation (NDE). The wood Pole Tester was used to assess ultrasonic velocity inside wood and drill resistance was determined using an IML-resistograph. For ultrasonic measurements squared timber and circular timber's measurements were separately conducted with 1,300 m/s as the standard ultrasonic velocity. The standard wood samples divided into two parts; a non-sound area (below the standard), and a sound area (above the standard). Furthermore, schematization of wood was compared with results naked eye observation. The drilling resistance test was performed for both length and thickness direction in wood. The internal of the drilling was set at 30 cm (length direction), 5 cm (width direction) and 30cm (thickness direction). A non-sound area was defined as that 1) amplitude is below 20% and 2) carbonization and deterioration are related.

A Study on tole Improvement of the Slurry Dispersibility in CMP (CMP 슬러리의 분산성 향상에 관한 연구)

  • Cho, Sung-Hwan;Kim, Hyoung-Jae;Kim, Ho-Youn;Kim, Heon-Deok;Seo, Kyoung-Jun;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1535-1540
    • /
    • 2001
  • This study presents the possibility of scratch reduction on wafer in CMP by applying the ultrasonic and megasonic energy into the slurry which might contain large abrasive particles. Experiments were conducted to verify the dispersion ability of agglomerated particles by applying ultrasonic, megasonic waves and analyze the particle distribution of used slurry in case, of sonic energy assisted or none. And the dispersion stability of megasonic waves was investigated through the experiment of stability of the dispersed slurry, Finally, to confirm that the distribution of particles in slurry by ultrasonic waves was actually related to scratches on wafer when CMP was done, tungsten blanket wafer was processed, by CMP to compare and investigate scratches on wafer.

A Study on the Application Characteristics of Ultrasonically Irradiated Bio-Diesel Fuel in Common-mil Direct Injection Diesel Engine (커먼레일 디젤기관에 초음파 조사 바이오디젤유 적용 특성에 관한 연구)

  • Choi Dooseuk;Jung Youngchul;Im Seukyeon;Ryu Jeongin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.109-114
    • /
    • 2006
  • The reformed bio-diesel fuel irradiated by the ultrasonic wave is applied to the diesel engine of common rail in common use recently. This study has the object to examine the properties of engine performance and discharged materials. The bio-diesel fuel is mixed and used with the diesel fuel in common use at the ratio of $20\%\;or\; 100\%$. The ultrasonic energy is irradiated to the individually mixed fuel in order to reform the fuel. This fuel is applied to the engine in this experiment. And It is compared and analyzed from the experimental results with two cases irradiating the ultrasonic wave and no irradiating.

A Study on the Ultrasonic Application for the Efficiency Elevation of the Hydrogen Fuel Production (On solution and concentration) (수소연료 생산의 효율향상을 위한 초음파응용에 관한 연구(용액과 농도 중심으로))

  • Song, Min-Geun;Lee, Sang-Bum;Son, Seung-Woo;Ju, Eun-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.2
    • /
    • pp.129-136
    • /
    • 2001
  • An investigation on the A/V(ampere/volt) gradient according to the concentration and the kind of solution in a electrolyzer is carried out to obtain the basic data on the ultrasonic application for the efficiency elevation of the hydrogen fuel production. KOH is selected as an electrolyte and concentrations are 0%, 10%, 20% and 30%. The solutions are city water, city water with nitrogen. distilled water and distilled water with nitrogen. The Electrochemical analyzer(BAS Co.) is used as a measuring device to observe the A/V gradient. And the limit of volt is from -3000mV to +3000mV. The 28kHz magnetic transducer is selected to give them ultrasonic forcing. In results, it is clarified that ultrasonic influences the A/V gradient in the electrolytic solution.

  • PDF

A Study on the Application of Ultrasonic Testing for The Interface Integrity Evaluation between Iron and Cement of Porcelain Insulator Cap (자기애자 캡의 금구-시멘트 계면 건전성 평가를 위한 초음파법 활용에 대한 연구)

  • Yoon, Young Geun;Choi, In Hyuk;Son, Ju Am;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.58-65
    • /
    • 2018
  • The life span of the porcelain insulator was made to be 30 years, but currently many of the 154kV NGK porcelain insulators using in Korea are found to have passed the production life. Accidents caused by aged mechanical breakdown can lead to disruption of power supply in some areas, large economic losses, and casualties. Therefore, ultrasonic method, which is one of the non - destructive test methods, is applied as a method for evaluating the integrity of porcelain insulators. In this study, the experiment on the interface of cap was conducted and the difference between the energy difference and the attenuation coefficient of the reflected wave was derived according to the interface state of the steel - cement. The results of this study are expected to be used as the basic data of the ultrasonic testing to evaluate the interface condition of the porcelain insulator cap.