• Title/Summary/Keyword: Ultrasonic dispersion

Search Result 165, Processing Time 0.03 seconds

Measurement of Elastic Constants of Thin Metallic Foil by Guided Wave Dispersion Characteristics (유도초음파 분산 특성을 이용한 박판의 탄성계수 측정)

  • Lee, Dong-Jin;Cho, Youn-Ho;Jang, Kang-Won;Cho, Seung-Hyun;Ahn, Bong-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.41-46
    • /
    • 2012
  • As the development of MEMS/NEMS structure and application technology the demand for an assessment of the mechanical properties have increased. The mechanical properties are mainly evaluated by using tensile test or ultrasonic wave measurement. However, the new technology have been developed such as nano-indentation, guided wave method because they have a limitation in case of a thin plate and thin film. In the study, the guided wave velocities are measured by electromagnetic-acoustic transducer(EMAT), the material properties of thin metallic foils are obtained using optimization process of the theoretical and experimental group velocity of guided wave. The Young's modulus obtained by the optimization process(201.6 GPa), nano-indentation(207.0 GPa) and literature value(203.7 GPa) of a $50{\mu}m$ thick nickel thin plate shows good agreement within 3%.

A Study of the Guided Wave Propagation in the Water Supplying Pipes with Scale (스케일이 있는 급수관내의 유도초음파의 전파 특성에 관한 연구)

  • Song, Sung-Jin;Lee, Dong-Hoon;Lee, Hyun-Dong;Bae, Cheol-Ho;Park, Jung-Hoon;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • Since the scale in pipes reduces the flow rate, a quantitative evaluation of the scale is essential for the proper maintenance of pipes. Guided waves were employed to estimate the amount of scale in water supplying pipes. Using variable angle wedge, several modes of guided waves wire generated and their propagation charcteristics along the pipes with stale were analyzed. It was experimentally observed that the amplitude of F(M,2) modes at $f{\times}d=1.5MHz\;mm$ decreased significantly with increasing amount of scale. The present study showed that F(M,2) modes were optima) to evaluate the scale in water supplying pipes.

Evaluation of Corrosion Fatigue Characteristics of 12Cr Steel Using Backward Radiated Ultrasound (후방복사된 초음파를 이용한 12Cr강 부식 피로특성 평가)

  • Kwon, Sung-Duk;Yoon, Seok-Soo;Song, Sung-Jin;Bae, Dong-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.397-401
    • /
    • 2000
  • The corrosion-fatigue characteristics of the 12Cr steel, which is widely used in fossil power plants as a turbine blade material, are evaluated nondestructively by use of the Rayleigh surface wave. In this study, the frequency dependency of the Rayleigh surface wave is investigated indirectly by measuring the angular dependency of the backward radiation of the incident ultrasonic wave in the aged specimens, and then compared to the corrosion-fatigue characteristics. The width of the backward radiation profile decreases as the increase of the aging temperature, which seems to result from the increase of the effective degrading layer thickness. This parameter also shows an inversely proportionality to the exponent, m, in the Paris law which predicts the crack size increasement due to fatigue. The result observed in this study demonstrates high potential of the backward radiated ultrasound as a tool for the nondestructive evaluation of the corrosion-fatigue characteristics of the aged materials.

  • PDF

Dispersion Characteristics of Wettable Powder Suspension by Ultrasonication (초음파 처리에 의한 수화제 현탁액의 분산 특성)

  • 나우정;주은선;김영복;송민근;이경렬
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.351-360
    • /
    • 2003
  • This study was carried out to settle the plugging problem which occurs frequently when agricultural wettable powder is used in pest control work using the crushing and the dispersing effects caused by irradiation of ultrasonic wave. Sonication was applied to the wettable powder suspension in a beaker for 30 seconds using a 28 kHz, 200 W PZT BLT, and the image of suspension before and after sonication was observed using a microscope and a SEM. The image of tow commercial wettable powder suspensions in water observed using an optics microscope showed that the agglomerated particles were irregularly distributed over the whole observed region when stirred mechanically, while showing more uniform distribution composed of comparatively single particles in the whole observed region after sonication. Concerning the above, the projected areas of particles in the four suspensions after sonication were decreased distinctively in the observed range of the microscope and the atomization of crystals was much developed. Over the measured range of 5.6∼4,157 ${\mu}$m particle size, the overall projected area of particles was decreased to 58.3∼89.6% on the average after sonication. When the SEM images of sonicated wettable powder suspensions dissolved in water and CH$_3$OH were compared to the suspensions before sonication, such phenomena as the atomization of particles, the expansion of voids between particles, the reduction and the decrease of agglomerated particle groups, and the progress of crack developments on the surface of flake-shaped particles were observed. It seemed possible that the plugging problem that occurs frequently in pest control machine when using wettable powder would be settled by the use of sonication.

Effects of Organoclay on the Thermal Insulating Properties of Rigid Polyurethane Foams Blown by Environmentally Friendly Blowing Agents

  • Kim, Youn-Hee;Choi, Seok-Jin;Kim, Ji-Mun;Han, Mi-Sun;Kim, Woo-Nyon;Bang, Kyu-Tae
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.676-681
    • /
    • 2007
  • A process designed to synthesize rigid polyurethane foam (PUF) with insulative properties via the modulation of PUF cell size via the addition of clay and the application of ultrasound was assessed. The blowing agents utilized in this study include water, cyclopentane, and HFC-365mfc, all of which are known to be environmentally-friendly blowing agents. The rigid PUFs were prepared from polymeric 4,4'-diphenylmethane diisocyanate (PMDI) and polyether polyol with a density of $50kg/m^3$. In addition, rigid PUFs/clay nanocomposites were synthesized with clay modified by PMDI with and without the application of ultrasound. The PUF generated using water as a blowing agent evidenced the highest tensile strength. The tensile strength of the PUF/nanocomposites was higher than that of the neat PUF and the strength was even higher with the application of ultrasound. The cell size of the PUF/clay nanocomposites was less than that of the neat PUF, regardless of the type of blowing agent utilized. It appears that the higher tensile strength and lower cell size of the PUF/clay nanocomposites may be attributable to the uniform dispersion of the clay via ultrasonic agitation. The thermal conductivity of the PUF/clay nanocomposites generated with HCFC-141b evidenced the lowest value when PUF/clay nanocomposites were compared with other blowing agents, including HFC-365mfc, cyclopentane, and water. Ultrasound has also proven effective with regard to the reduction of the thermal conductivity of the PUF/clay nanocomposites with any of the blowing agents employed in this study. It has also been suggested that the uniformly dispersed clay particles in the PUF matrix function as diffusion barriers, which prevent the amelioration of the thermal insulation property.

Identification of Guided-Wave Modes in Pipings of Power Plants by using Air-coupled Transducer (Air-coupled 트런스듀서를 이용한 발전설비 배관에서의 유도초음파 모드 규명)

  • Park, Ik-Keun;Kim, Hyun-Mook;Kim, Yong-Kwon;Song, Won-Joon;Cho, Yong-Sang;Jhang, Kyung-Young;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.341-347
    • /
    • 2004
  • In order to inspect the piping effectively, one of the important components in the facility of power plants, the ultrasonic guided wave was generated by a tomb transducer and was received in a non-contact fashion by using an air-coupled transducer. The guided wave modes that ran be generated by the comb transducer in piping are predicted from the theoretical dispersion curves and the element spacing of a comb transducer. Moreover, to receive the specific modes, the receiving angle of the air-coupled transducer is calculated from Snell's law between the phase velocities of guided waves and the sound velocity of air. The guided wave modes obtained in experiments are identified from the result of time-frequency analysis such as wavelet transform and two-dimensional fast Fourier transform.

Experimental Study for Separation of Membrane and Recovery of Platinum from MEA (연료전지(燃料電池) 막전극접합체(膜電極接合體)의 막분리(膜分離) 및 백금(白金) 회수(回收)에 관(關)한 연구(硏究))

  • Lee, Jin-A;Kang, Suk-Min;Yoo, Sung-Yeol;Kang, Hong-Yoon;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.20 no.4
    • /
    • pp.52-57
    • /
    • 2011
  • Present paper reports a new method to separate the electrolyte membranes and carbon paper without using ultrasonic waves and stirring. In this method, these were separated from fuel cell membrane-electrode assembly(MEA) using the distilled water, butanol and surfactant by dipping method without the dispersion of catalyst particles. Separated carbon paper catalysts and fuel cell Pt/C catalysts were heated in aqua regia at $80{\sim}85^{\circ}C$ and added to precipitant. After calcination, Pt metal was recovered which might be used in fabricating new fuel cells.

An efficient shear deformation theory for wave propagation of functionally graded material plates

  • Boukhari, Ahmed;Atmane, Hassen Ait;Tounsi, Abdelouahed;Adda Bedia, E.A.;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.837-859
    • /
    • 2016
  • An efficient shear deformation theory is developed for wave propagation analysis of an infinite functionally graded plate in the presence of thermal environments. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The thermal effects and temperature-dependent material properties are both taken into account. The temperature field is assumed to be a uniform distribution over the plate surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle and the physical neutral surface concept. There is no stretching.bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and temperature on wave propagation of functionally graded plate are discussed in detail. It can be concluded that the present theory is not only accurate but also simple in predicting the wave propagation characteristics in the functionally graded plate. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

Facile Synthesis of g-C3N4 Modified Bi2MoO6 Nanocomposite with Improved Photoelectronic Behaviors

  • Zhu, Lei;Tang, Jia-Yao;Fan, Jia-Yi;Sun, Chen;Meng, Ze-Da;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.593-600
    • /
    • 2021
  • Herein, a series of g-C3N4 modified Bi2MoO6 nanocomposites using Bi2MoO6 and melamine as original materials are fabricated via sintering process. For presynthesis of Bi2MoO6 an ultrasonic-assisted hydrothermal technique is researched. The structure and composition of the nanocomposites are characterized by Raman spectroscopy, X-ray diffraction (XRD), and high-resolution field emission scanning electron microscopy (SEM). The improved photoelectrochemical properties are studied by photocurrent density, EIS, and amperometric i-t curve analysis. It is found that the structure of Bi2MoO6 nanoparticles remains intact, with good dispersion status. The as-prepared g-C3N4/Bi2MoO6 nanocomposites (BMC 5-9) are selected and investigated by SEM analysis, which inhibits special morphology consisting of Bi2MoO6 nanoparticles and some g-C3N4 nanosheets. The introduction of small sized g-C3N4 nanosheets in sample BMC 9 is effective to improve the charge separation and transfer efficiency, resulting in enhancing of the photoelectric behavior of Bi2MoO6. The improved photoelectronic behavior of g-C3N4/Bi2MoO6 may be attributed to enhanced charge separation efficiency, photocurrent stability, and fast electron transport pathways for some energy applications.

Investigating wave propagation in sigmoid-FGM imperfect plates with accurate Quasi-3D HSDTs

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.185-202
    • /
    • 2024
  • In this research paper, and for the first time, wave propagations in sigmoidal imperfect functionally graded material plates are investigated using a simplified quasi-three-dimensionally higher shear deformation theory (Quasi-3D HSDTs). By employing an indeterminate integral for the transverse displacement in the shear components, the number of unknowns and governing equations in the current theory is reduced, thereby simplifying its application. Consequently, the present theories exhibit five fewer unknown variables compared to other Quasi-3D theories documented in the literature, eliminating the need for any correction coefficients as seen in the first shear deformation theory. The material properties of the functionally graded plates smoothly vary across the cross-section according to a sigmoid power law. The plates are considered imperfect, indicating a pore distribution throughout their thickness. The distribution of porosities is categorized into two types: even or uneven, with linear (L)-Type, exponential (E)-Type, logarithmic (Log)-Type, and Sinus (S)-Type distributions. The current quasi-3D shear deformation theories are applied to formulate governing equations for determining wave frequencies, and phase velocities are derived using Hamilton's principle. Dispersion relations are assumed as an analytical solution, and they are applied to obtain wave frequencies and phase velocities. A comprehensive parametric study is conducted to elucidate the influences of wavenumber, volume fraction, thickness ratio, and types of porosity distributions on wave propagation and phase velocities of the S-FGM plate. The findings of this investigation hold potential utility for studying and designing techniques for ultrasonic inspection and structural health monitoring.