• 제목/요약/키워드: Ultrasonic circuit

Search Result 108, Processing Time 0.025 seconds

Analysis of Ultrasonic Linear Motor Using the Finite Element Method and Equivalent Circuit

  • Park, Jong-Seok;Joo, Hyun-Woo;Lee, Chang-Hwan;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.4
    • /
    • pp.159-164
    • /
    • 2003
  • In this paper, a three-dimensional finite element method and construction of equivalent-circuit for a linear ultrasonic motor are presented. The validity of three-dimensional finite element routine in this paper is experimentally confirmed by analyzing impedance of a piezoelectric transducer. Using this confirmed finite element routine, impedance and vibration mode of a linear ultrasonic motor are calculated. Elliptical motion of contact point between vibrator and rail of the linear ultrasonic motor is shown for determination of contact points. By using the finite element method and analytic equations, characteristics of the linear ultrasonic motor, such as thrust force, speed, losses, powers and efficiency, are calculated. The results are confirmed by experiment. Finally, equivalent circuit parameters of the linear ultrasonic motor are obtained using the three-dimensional finite element method and analytic equations.

A study on micro grooving characteristics of planar lightwave circuit and glass using ultrasonic vibration cutting (초음파 진동절삭을 이용한 평면 광도파로와 유리의 미세 홈 가공특성에 관한 연구)

  • 이준석;김병국;정융호;이득우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.167-172
    • /
    • 2002
  • Recent years, optical components'are widely used in optical communication industry for high speed and mass storage data processing. Micro grooving of planar lightwave circuit and glass, those are widely used in optical component, are realized by polycrystalline diamond tool with ultrasonic vibration. To know the characteristics of brittle materials cutting, ultrasonic vibration cutting tool and machining system are built for the experiment. Grooving on planar lightwave circuit and glass experiments are performed and their shape are measured by photograph with microscope. It reveals that better groove shape with low chipping of planar lightwave circuit and glass are obtained by micro grooving machining with ultrasonic vibration. These experiments are considered as a possibility to the micro grooving of optical communication components.

  • PDF

LED Driving Circuit Design of Ultrasonic Speaker System for Sign Board (싸인 보드용 초음파 스피커 상태표시를 위한 LED 구동 회로의 설계)

  • Lee, Kyung-Ryang;Yeo, Sung-Dae;Jang, Young-Jin;Cha, Jae-Sang;Kim, Jin-Tae;Shin, Jae-Kwon;Kim, Seong-Kweon
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.17-20
    • /
    • 2013
  • In this study, we introduce an LED Driving circuit in order that the information state can indicate audio signal gain and radiate pattern of ultrasonic speaker system for a sign board. Ultrasonic speaker system decreases energy loss and transmits the sound farther. Ultrasonic speaker having such characteristics is useful in that it can be widely used in daily life. Additionally, Proposed LED circuit indicates the information state as linear LED brightness taken from interface of ultrasonic speaker system. Designed circuit is confirmed through $0.35{\mu}m$ CMOS process by Dong-bu.

A study of DSC using Ultrasonic and Thermal treatment on nano-crystalline $TiO_{2}$ surface (염료감응형 태양전지 $TiO_{2}$ 광전극 표면의 초음파 열처리에 관한 연구)

  • Hong, Ji-Tae;Choi, Jin-Young;Seo, Hyun-Woong;Kim, Jong-Lak;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.317-319
    • /
    • 2007
  • Recently, there were many researches for efficiency improvement of DSC. Among of these works, research of surface treatment is still a prerequisite for electron diffusion, light-harvesting and surface state of $DSC^{4)}$. Using of the surface treatment, it can be raise up porosity of $TiO_{2}$ nano-crystalline structure on $photo-electrode^{5)}$. There are chemical, physical, electrical and optical methods which raise up its porosity. In this paper, we have designed and manufactured MOPA-type ultrasonic circuit (100W, frequency and duty variable). Manufactured ultrasonic circuit to use to force cavity density and power into $TiO_{2}$ paste. Then, we have optimized forcing time, frequency and duty of ultrasonic irradiation for surface treatment of photo-electrode of DSC. In I-V characteristic test of DSC, ultrasonic and thermal treated DSC shows 19% improved its efficiency against established DSC.

  • PDF

Optimum Driving Characteristics of U1trasonic Nozzle (초음파 노즐의 최적 구동 특성)

  • Kim, Hwa-Soo;Lee, Sang-Ho;Hwang, Lak-Hoon;Yoo, Ju-Hyun;Kim, Kook-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.272-273
    • /
    • 2007
  • In this paper, ultrasonic nozzle and driving circuit were manufactured, respectively. And then, their electrical properties. were investigated. Ultrasonic nozzle was fabricated using PSN-PMN-PZT ceramics showing excellent piezoelectric characteristics. In order to drive ultrasonic nozzle, PWM controller(KA3525A) was used. The purpose of this study is to find the optimal driving condition of ultrasonic. nozzle. Accordingly electrical and temperature characteristic of ultrasonic driving system were investigated as a function of the input voltage.

  • PDF

The Aerosol Characteristics of Utrasonic Nozzle on the Driving Circuits (구동회로에 따른 초음파 노즐의 분무 특성)

  • 이수호;민석규;윤광희;류주현;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1005-1009
    • /
    • 2001
  • The application of the ultrasonic nozzle has been extended because it is possible atomization of liquid material. In this study, the driving characteristics of the ultrasonic nozzle on the driving circuit were investigated. And the characteristics of the ceramic oscillator were investigated for the temperature stability. The ceramic oscillator were made the Pb[(Sb$\sub$1/2/,Nb$\sub$1/2/)$\sub$0.035/-(Mn$\sub$1/3/Nb$\sub$2/3/)$\sub$0.065/- (Zr$\sub$x/Ti$\sub$l-x/)$\sub$0.9/]O$_3$with mole ratio of Zr/Ti. The ceramis oscillator were need the curie temperature of the over 300[$^{\circ}C$] for the temperature stability. When the Zr/Ti ratio was 49/51, it's curie temperature is 322[$^{\circ}C$] and the electromechanical coupling factor(k$\sub$p/) and mechanical quality factor(Q$\sub$m/) showed the values of 0.555, 1,214, respectively The resonance frequency of ceramic oscillator were from 40KHz to 45KHz. So that, the driving circuit were made a possibility that the frequency are variable. The driving current of ultrasonic nozzle showed the value of maximum 80[mA]. Also, The surface temperature of ceramic oscillator showed 80[$^{\circ}C$] at driving time 10[min]. We knew that the ultrasonic nozzle had stabile driving above 10[min.].

  • PDF

Fabrication and charateristics of the foot-spa driving circuit using ultrasonic vibrator (초음파 진동자를 이용한 족욕기용 구동회로 제작 및 특성)

  • Jang, Eun-Sung;Kim, Hyeung-Kyu;Lee, Sang-Ho;Yoo, Ju-Hyun;Hwang, Lak-Hoon;Jeong, Hoy-Seung;Chung, Kwang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.705-709
    • /
    • 2004
  • In this study, the foot-spa driving circuit using ultrasonic vibrator was manufactured The used ultrasonic vibrator was PSN-PMN-PZT ceramic with the radius of $25{\Phi}$ and the thickness of 2, 2.5, 3, 3.5 and 4mm, respectively. Resonent frequency for driving ultrasonic vibrator at the fabricated circuit was generated using the self exciting and the external exciting methods. Fabricated foot-spa showed the best condition at the resonent frequency of 1.130MHz and the ceramic thickness of 2.0mm. That is, when the foot-spa was operated for 360 min. at $0.5\ell$ water, temperature increase of water was $14^{\circ}C$ at the self exciting method and $16^{\circ}C$ at the external exciting methods, respectively.

  • PDF

Simulation of Ultrasonic Dry Cleaning for Semiconductor/display Device Application (반도체/디스플레이 소자용 초음파 건식세정 시뮬레이션 연구)

  • Yun, Eui-Jung;Lee, Gang-won;Kim, Chol-Ho;Lee, Seok-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1259-1263
    • /
    • 2004
  • In this paper, the optimum design of ultrasonic dry cleaning head was investigated. The transducer instead of mechanical dynamic structure was used to generate ultrasonic wave and the horn-shape amplifier was utilized to solve the energy decaying problem of ultrasonic wave with propagating it through the media. The analyses of ultrasonic wave and a fluid for the selected structure of a cleaning head were carried out using SYSNOISE and ANSYS simulators, respectively. Based on simulator results, the distance between a horn and the substrate of 4 mm and the horn diameter of 10 mm were determined to maximize the energy of ultrasonic waves. The cooling structure was also considered to reduce the heat from the transducer and the horn. The equivalent circuit for the fabricated horn was deduced from HP4194A impedance/gain/phase analyzer and the frequency of an ultrasonic wave of 20.25 kHz was confirmed using the parameters of the equivalent circuit.

A Study on Resonance Tracking Method of Ultrasonic Welding Machine Inverter (초음파 용접기 인버터의 공진 추종 방법에 관한 연구)

  • Moon, Jeong-Hoon;Park, Sung-Jun;Lim, Sang-Kil;Kim, Dong-Ok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.481-490
    • /
    • 2021
  • In the ultrasonic welding machine, when the load fluctuates, the L and C of the piezo element in the oscillation part change. As a result, the resonant frequency is changed, so it is necessary to match the operating frequency of the ultrasonic welding machine to the new resonant frequency. That is, in order to maximize the output of the oscillation unit of the ultrasonic welding machine, it is inevitable to follow the resonance frequency. Accordingly, many methods for following the resonant frequency are being actively studied. In addition, in order to check the effect of external inductance on the operation of the ultrasonic welding machine, The equivalent circuit of the piezo element was analyzed by including the external inductance for resonance in the equivalent circuit of the piezo element, and the method of selecting an appropriate inductance was described. In this paper, we propose a new system that allows the switching frequency of the inverter to tracking the resonance frequency even if the resonance frequency is changed due to the load of the ultrasonic welding machine.

Micro drilling of multi-layer PCB with the use of ultrasonic vibration (초음파진동을 이용한 다층 PCB 기판의 마이크로 드릴링)

  • 장성훈;이선규;원종률;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1853-1856
    • /
    • 2003
  • Multi-layer printed circuit board(PCB) is being used widely for the product with relatively complex circuits such as TV, VTR and FAX. With the rapid enlargement of electronic and IT industry, the hole machining technology on multi-layer PCB is increasingly required to improve. Thus, the micro drilling with ultrasonic vibration can be a good method for hole machining. Unlike conventional drilling, ultrasonic vibration applied drilling introduces less wear and fracture of not only tool but also internal surface of workpiece due to little cutting resistance, thus, machinability can be improved. The experiment is conducted through the comparison between the results of conventional drilling and ultrasonic micro drilling as well as among each results by the variation according to not only feed rate of drill but also amplitude and frequency of ultrasonic vibration. The multi-layer PCB consists of 6 layers and ${\Phi}$0.3 diameter drill was used. As a result, it was found that the state of internal surfaces of holes on multiple layer PCBs is improved by the application of ultrasonic vibration.

  • PDF