• Title/Summary/Keyword: Ultrasonic Sensor Array

Search Result 49, Processing Time 0.033 seconds

Frequency Controllable Wide-Beam Ultrasonic Transducer with Transverse Mode (압전 횡효과를 이용한 무지향성 주파수가변 초음파트랜스듀서)

  • Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol;Kang, Kab-Jung
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.417-423
    • /
    • 2004
  • In order to obtain wide-beam characteristics and variable resonant frequency of a ultrasonic transducer for the array source, an electrode of transverse mode piezoelectric vibrator is divided, and an electronic inductance is connected to the divided electrodes. The electronic inductance is made by GIC (General Impedance Converter) circuit. Because the GIC circuit is made of OP-Amps and other passive elements, the value of the inductance can be selected easily. As the results, the electronic inductance is variable in the range from 0.2 mH to 1.2 mH. Using the inductance, the resonance frequency of the transducer can be changed in the range from 73 kHz to 86 kHz. In the directivity of the transducer, it is confirmed that the beam width of the transducer is wider than $80^{\circ}$ at -3 dB in water.

Fabrication of Two-Dimensional Array Hydrophones and Application to Ultrasonic Field Measurement (2차원 배열 수중청음기의 제작과 초음파 음장 측정에의 응용)

  • Ha, Kang-Lyeol;Kim, Moo-Joon;Kang, Gab-Joong;Hyun, Byung-Gook;Chae, Min-Ku;Imano, Gazuhiko
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.320-328
    • /
    • 2001
  • Two-dimensional array hydrophones with $8{\times}8$ elements were designed and fabricated using the PVDF(Polyvinylidene fluoride) piezoelectric film, and the method and system for ultrasonic field measurement in several MHz $\sim$ tens of MHz band using the hydrophones was established. The characteristics of frequency response relating to the backing materials were analyzed with the Mason equivalent circuit for design, and the accuracy of ultrasonic field measurement relating to the sizes and kerfs of piezoelectric elements was discussed. Good results of the measurement of ultrasonic field formed by a circular plane transducer of 2.25MHz in water were obtained by the system with the array hydrophones.

  • PDF

A Study on the Ultrasonic Sensor Array for the Mobile Robot (모빌 로보트의 초음파 센서열에 관한 연구)

  • Yoon, Y.B.;Lee, S.M.;Choi, H.H.;Hong, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1256-1259
    • /
    • 1987
  • This paper gives a new SRF (Sonic Range Finder) Array formation on the mobile robot. This SRF Array formation obtaine the mobile robot's environmental informations wider and faster than the other systems and detects the obstacles in the robot's path. It is processed and controlled by 8031, on-chip micro-computer. SRF Array sensors are drived by the LM1812 transceiver and selected by the 8-channel channel multiplexer. In this paper, it detects the obstacles in wider range and gives them to the MAIN to design the shortest modify path.

  • PDF

3-D Object Recognition and Restoration for Packing Administration System Using Ultrasonic Sensors and Neural Networks (주차관리 시스템 응용을 위한 신경회로망과 연계된 초음파 센서의 3차원 물체인식과 복원)

  • 조현철;이기성;사공건
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.4
    • /
    • pp.78-84
    • /
    • 1996
  • In this study, 3-D object recognition and restoration independent of the object translation for automotive kind recognition in parking administration system using an ultrasonic sensor array, neural networks and invariant moments are presented. Using invariant moment vectors of the acquired data 16$\times$8 pixels, 3-D objects could be classified by SCL (Simple Competitive Learning) neural networks. Modified SCL neural networks using the 16$\times$8 low resolution image was used for object restoration of 32$\times$32 high resolution image. Invariant moment vectors kept constant independent of the object translation. The recognition rates for the training and the testing data were 98[%] and 95[%], respectively. The experimental results have shown that ultrasonic sensor array with the neural networks could be applied for the detection of the automobiles and classification of the automotive kind.

  • PDF

Development of MFL Testing System for the Inspection of Storage Tank Floor (저장탱크 바닥면 검사를 위한 누설자속 탐상 시스템 개발)

  • Won, Soon-Ho;Cho, Kyung-Shik;Lee, Jong-O;Chang, Hong-Keun;Joo, Gwang-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.38-44
    • /
    • 2002
  • MFL method is a qualitative inspection tool and is a reliable, fast and economical NDT method. The application of MFL method to the inspection of storage tank floor plates has been shown to be a viable means. Examination of tank floors previously depended primarily upon ultrasonic test methods that required slow and painstaking application. Therefor most ultrasonic inspection of storage tank has been limited to spot testing only. Our NDE group have developed magnetic flux leakage system to overcome limitation of ultrasonic test. The developed system consists of magnetic yoke, array sensor, crawler and software. It is proved that the system is able to detect artificial flaw like 3.2mm diameter, 1.2mm depth in 6mm thick steel plate.

Analysis and Reduction of the Cross Talk in Ultrasonic Transducers (초음파 트랜스듀서에서의 Cross talk 분석 및 방지 방안)

  • Roh Yong-Rae;Kim Young-shin;Lee Su-Sung
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.215-218
    • /
    • 2001
  • Finite element models are constructed using the commercial code ANSYS for two most representative types of ultrasonic transducers, cMUTs and piezoelectric transducers. Calculation result shows the origin and level of cross talk between array elements in each transducer type For reduction of the cross talk level, the effects of various structural variations are Investigated for each transducer type. The results say that proper design of the coupling isolation structures between the transducing elements can significantly reduce the cross talk in ultrasonic transducers.

  • PDF

A study for implementation of ultrasonic transducer in the prostate cancer hyperthermia (전립선암의 온열치료를 위한 초음파변환기 개발에 관한 연구)

  • Park, Mun-Kyu;Noh, Si-Cheol;Park, Jae-Hyun;Choi, Heung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.377-384
    • /
    • 2009
  • The ultrasonic hyperthermia for oncology has been developed and studied. The HIFU(high intensity focused ultrasound) is the most recent method to treat the tumor by using ultrasound. In this study, an insertion-type transducer for treating a prostate cancer, which can focus the ultrasonic beam mechanically and electrically, was designed and developed. The developed transducer was composed of three arrays, and each array has 32 elements. For the purpose of the mechanical focusing, both side arrays are slanted to the center array by $15^{\circ}$. With this structure, NFL(near field length) was set up as 30 mm. The PZT-4 and two matching layers were used, and the backing layer was excepted to prevent energy losses. The acoustic field analysis and the heating test were performed to evaluate the performance of developed transducer. The shape of an acoustic field, peak pressure, and acoustic pressure distribution were compared with numerical simulation. The NFL was 32 mm, the beam width was 5 mm, focal area was $40\;mm^2$, and peak pressure was 5.5 MPa. With heating by using developed transducer, the temperature increased up to $33^{\circ}C$ at focal zone. As a result of this study, the usefulness of suggested transducer for prostate cancer hyperthermia was confirmed by the acoustic field analysis and the heating test with TMM(tissue mimicking) phantom.

GMR Sensor Applicability to Remote Field Eddy Current Defect Signal Detection in a Ferromagnetic Pipe (강자성 배관의 원격장 와전류 결함 신호 검출에 GMR Sensor의 적용성 연구)

  • Park, Jeong Won;Park, Jae Ha;Song, Sung Jin;Kim, Hak Joon;Kwon, Se Gon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.483-489
    • /
    • 2016
  • The typical methods used for inspecting ferromagnetic pipes include the ultrasonic testing (UT) contact method and the following non-contact methods: magnetic flux leakage (MFL), electromagnetic acoustic transducers (EMAT), and remote field eddy current testing (RFECT). Among these methods, the RFECT method has the advantage of being able to establish a system smaller than the diameter of a pipe. However, the method has several disadvantages as well, including different sensitivities and difficult-to-repair coil sensors which comprise its array system. Therefore, a giant magneto-resistance (GMR) sensor was applied to address these issues. The GMR sensor is small, easy to replace, and has uniform sensitivity. In this experiment, the GMR sensor was used to measure remote field and defect signal characteristics (in the axial and radial directions) in a ferromagnetic pipe. These characteristics were measured in an effort to investigate standard defects at changing depths within a pipe. The results show that the experiment successfully demonstrated the applicability of the GMR sensor to RFECT signal detection in ferromagnetic pipe.

Quasi-Optimal DOA Estimation Scheme for Gimbaled Ultrasonic Moving Source Tracker (김발형 초음파 이동음원 추적센서 개발을 위한 의사최적 도래각 추정기법)

  • Han, Seul-Ki;Lee, Hye-Kyung;Ra, Won-Sang;Park, Jin-Bae;Lim, Jae-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.276-283
    • /
    • 2012
  • In this paper, a practical quasi-optimal DOA(direction of arrival) estimator is proposed in order to develop a one-axis gimbaled ultrasonic source tracker for mobile robot applications. With help of the gimbal structure, the ultrasonic moving source tracking problem can be simply reduced to the DOA estimation. The DOA estimation is known as one of the representative long-pending nonlinear filtering problems, but the conventional nonlinear filters might be restrictive in many actual situations because it cannot guarantee the reliable performance due to the use of nonlinear signal model. This motivates us to reformulate the DOA estimation problem in the linear robust state estimation setting. Based on the assumption that the received ultrasonic signals are noisy sinusoids satisfying linear prediction property, a linear uncertain measurement model is newly derived. To avoid the DOA estimation performance degradation caused by the stochastic parameter uncertainty contained in the linear measurement model, the recently developed NCRKF (non-conservative robust Kalman filter) scheme [1] is utilized. The proposed linear DOA estimator provides excellent DOA estimation performance and it is suitable for real-time implementation for its linear recursive filter structure. The effectiveness of the suggested DOA estimation scheme is demonstrated through simulations and experiments.

Ultrasonic Targeting of NK Cell in Vessel Bifurcation for Immunotherapy: Simulation and Experimental Validation

  • Saqib Sharif;Hyeong-Woo Song;Daewon Jung;Hiep Xuan Cao;Jong-Oh Park;Byungjeon Kang;Eunpyo Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.418-424
    • /
    • 2023
  • Natural killer (NK) cells play a crucial role in combating infections and tumors. However, their therapeutic application in solid tumors is hindered by challenges, such as limited lifespan, tumor penetration, and delivery precision. Our research introduces a novel ultrasonic actuation technique to navigate NK cells more effectively in the vascular system, particularly at vessel bifurcations where targeted delivery is most problematic. We use a hemispherical ultrasonic transducer array that generates phase-modulated traveling waves, focusing on an ultrasound beam to steer NK cells using blood-flow dynamics and a focused acoustic field. This method enables the precise obstruction of non-target vessels and efficiently directs NK cells toward the tumor site. The simulation results offer insights into the behavior of NK cells under various conditions of cell size, radiation pressure, and fluid velocity, which inform the optimization of their trajectories and increase targeting efficiency. The experimental results demonstrate the feasibility of this ultrasonic approach for enhancing NK cell targeting, suggesting a potential leap forward in solid tumor immunotherapy. This study represents a significant step in NK cell therapeutic strategies, offering a viable solution to the existing limitations and promising enhancement of the efficacy of cancer treatments.