• Title/Summary/Keyword: Ultrasonic Sensor

Search Result 836, Processing Time 0.03 seconds

Frequency Distribution of Mechanical Noise Signals for Ultrasonic Wave and AE Sensor with Brush Spark of DC Motor (직류전동기 브러시 섬락에 따른 기계적 노이즈 신호의 주파수 분포)

  • 이상우;김인식;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.36-43
    • /
    • 2004
  • In this paper, the frequency spectra from respective mechanical noise signals detected using ultrasonic wave and AE(Acoustic Emission) sensor were analysed to under spark generation between brush and commutator side with arbitrarily 15$^{\circ}$ rotation for brush from the DC motor in operation. Also, the frequency spectra from respective magnetizing noise signals detected using ultrasonic wave and AE sensor were analysed to under neutral point for brush from the DC motor in normal operation. And the analyses and comparison between the mechanical noise signal and magnetizing noise signal of ultrasonic wave with brush location change from the DC motor in operation. As the experimental results, tile mechanical noise signal of ultrasonic wave under spark generation between brush and commutator side with brush location change from the DC motor in operation were increased about 2.5∼3.0 times than magnetizing noise signal of ultrasonic wave form the DC motor in normal operation. Also, the main frequency band for mechanical noise signals of AE under spark generation between brush and commutator side with brush location change from the DC motor in operation, appeared about 1.3[MHz]∼l.5[MHz] by the fast fourier transform.

Comparison of an ultrasonic distance sensing system and a wire draw distance encoder in motion monitoring of coupled structures

  • Kuanga, K.S.C.;Hou, Xiaoyan
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.191-201
    • /
    • 2016
  • Coupled structures are widely seen in civil and mechanical engineering. In coupled structures, monitoring the translational motion of its key components is of great importance. For instance, some coupled arms are equipped with a hydraulic piston to provide the stiffness along the piston axial direction. The piston moves back and forth and a distance sensing system is necessary to make sure that the piston is within its stroke limit. The measured motion data also give us insight into how the coupled structure works and provides information for the design optimization. This paper develops two distance sensing systems for coupled structures. The first system measures distance with ultrasonic sensor. It consists of an ultrasonic sensing module, an Arduino interface board and a control computer. The system is then further upgraded to a three-sensor version, which can measure three different sets of distance data at the same time. The three modules are synchronized by the Arduino interface board as well as the self-developed software. Each ultrasonic sensor transmits high frequency ultrasonic waves from its transmitting unit and evaluates the echo received back by the receiving unit. From the measured time interval between sending the signal and receiving the echo, the distance to an object is determined. The second distance sensing system consists of a wire draw encoder, a data collection board and the control computer. Wire draw encoder is an electromechanical device to monitor linear motion by converting a central shaft rotation into electronic pulses of the encoder. Encoder can measure displacement, velocity and acceleration simultaneously and send the measured data to the control computer via the data acquisition board. From experimental results, it is concluded that both the ultrasonic and the wire draw encoder systems can obtain the linear motion of structures in real-time.

Recognition resolution enhancement of ultrasonic sensors via multiple steps of transmitter voltages

  • Na, Seung-You;Park, Min-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.409-412
    • /
    • 1996
  • Ultrasonic sensors are widely used in various applications due to advantages of low cost, simplicity in construction, mechanical robustness, and little environmental restriction in usage. But the main purposes of the noncontact sensing are rather narrowly confined within object detection and distance measurement. For the application of object recognition, ultrasonic sensors exhibit several shortcomings of poor directionality which results in low spatial resolution of objects, and specularity which gives frequent erroneous range readings. To resolve these problems in object recognition, an array of the sensor has been used. To improve the spatial resolution, more number of sensors are used in essence throughout the various devices of the sensor arrays. Under the disguise of a fixed number of the sensors, the array can be shifted mechanically in several steps. In this paper we propose a practical sensor resolution enhancement method using an electronic circuit accompanying the sensor array. The circuit changes the transmitter output voltage in several steps. Using the known sensor characteristics, a set of different return echo signals provide enhanced spatial resolution. The improvement is obtained with neither the cost of the increased number of the sensors nor extra mechanical devices.

  • PDF

Obstacle Avoidance of a Mobile Robot Using Low-Cost Ultrasonic Sensors with Wide Beam Angle (지향각이 넓은 저가의 초음파센서를 이용한 이동로봇의 장애물 회피)

  • Choi, Yun-Kyu;Choi, Woo-Soo;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1102-1107
    • /
    • 2009
  • An ultrasonic sensor has been widely used as a range sensor for its low cost and capability of detecting some obstacles, such as glasses and black surfaces, which are not well detected by a laser scanner and an IR sensor. Although low-cost sensors are preferred for practical service robots, they suffer from the inaccurate and insufficient range information. This paper proposes a novel approach to obstacle avoidance using low-cost anisotropic ultrasonic sensors with wide beam angle. In this paper, obstacles can be detected by the proposed sensor configuration which consists of one transmitter and three receivers. Because even wide obstacles are represented by a point, which corresponds to the intersection of range data from each receiver of the anisotropic sensor, a robot cannot avoid wide obstacles successfully. This paper exploits the probabilistic mapping technique to avoid collision with various types of obstacles. The experimental results show that the proposed method can robustly avoid obstacles in most indoor environments.

Optical Filter Design for Fluorescence Technique Based Phycocyanin Measurement Sensor Used In Water Treatment Plants

  • Mariappan, Vinayagam;Lee, Sung Hwa;Yang, Seungyoun;Kim, Jintae;Lee, Minwoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.45-50
    • /
    • 2018
  • Recently the water management department advised the water treatment industry to focus on deploy the chemical free and the environmentally responsible process to adopt on water treatment plants in every country. In this objective, water treatment process started using ultrasonic based phycocyanin extraction with fluorescence measurement techniques to detect the change in the yield of phycocyanin. This paper propose the design of optical filter model for fluorescence technique based immersive optical phycocyanin measurement sensor design. The proposed design uses the multi-wavelength sensor module for irradiating part, and this plays a role of removing a wavelength band other than 590 ~ 620 nm. The preliminary study on immersed phycocyanin sensor, the fluorescence value of picocyanin according to the ultrasonic intensity, treatment time and number of cells was measured using JM phycocyanin module to emulate the proposed design, and were compared performance of the proposed sensor emulation. In this design, the phycocyanin fluorescence value increased about 2.1 ~ 4.7 times as the ultrasonic treatment time increased as compared with JM phycocyanin module, and the phycocyanin fluorescence value within the analysis range was obtained by ultrasonic treatment within one minute.

Analysis of Receiving sensitivity according to Contact Surface Change of Transmit-Receiver Ultrasonic Sensor for Fuel Level Measurement in CNG Tank (CNG 탱크 내 연료량 계측을 위한 송·수신 초음파 센서의 접촉면 변경에 따른 수신 감도 분석)

  • Kim, Nam-Wook;Im, Seok-Yeon;Choi, Doo-Seuk
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.137-142
    • /
    • 2018
  • This paper is studied, as basic research for measuring the accurate fuel amount of the CNG tank by using the transmit-receive ultrasonic sensor, the receiving sensitivity according to changed the pressure inside the tank and the contact surface of the ultrasonic sensor is analyzed. Measurement was carried out while changing the contact surface of the tank and the sensor to three shapes of Point, Line, and Surface and charging the pressure in the tank at an interval of 1 bar from 0 bar to 5 bar. Experiment results, as the pressure in the tank increased the tendency of the received signal value of the ultrasonic sensor to decrease was confirmed. As the contact area between the tank and the sensor increased, the value of the received signal increased, but the noise also increased. The results of experiment, it is judged that accuracy can be improved by changing the contact surface of the sensor.

Temperature Measurement on Ultrasonic Weld Surfaces by Using an Infrared Sensor (적외선 센서를 이용한 초음파 용착부의 마찰열 측정)

  • Kim, Won-Ho;Kang, Eun-Ji;Min, Kyung-Tak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.425-429
    • /
    • 2017
  • During ultrasonic welding, plastic deformation, elastic hysteresis, and friction generate heat at the contact portions of the two materials to be welded, theoretically analyzing and experimentally measuring the temperature at the welded part are very important for identifying the heat affected zone. However, the welding temperature during ultrasonic welding wherein welding is performed in less than a second is a challenge. We investigated the effects of welding conditions such as welding time, welding pressure, and the ultrasonic vibration amplitude of horns on the temperature of welded surface of a Ni sheet of thickness 0.1 mm. We used a horn with a resonance frequency of 40 kHz and an ultrasonic welder. The temperature was measured using a intrared sensor, and its characteristics were investigated. Experimental results showed that increase in welding time and pressure and ultrasonic vibration amplitude of horns generally caused the increase in surface temperature of the weld.

A Study on the Utrasonic Application for the Efficiency Elevation of the Hydrogen Fuel Production - By the Pressure Sensor Gage - (수소 연료 생산의 효율향상을 위한 초음파 응용에 관한 연구 - 압력센서 계기에 의한 -)

  • Song, Min-Guen;Son, Seung-Woo;Ju, Eun-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1229-1237
    • /
    • 2003
  • The production of hydrogen fuel depends basically on the water electrolysis. The ultrasonic effects the decrease of the overpotential in a water electrolysis. A study on the overpotential which activates the hydrogen production is the core to elevate the hydrogen production efficiency on the principle. A pressure sensor system by a new idea is developed and applied. Solutions are 4 kinds of KOH concentration such as 0%, 10%, 20%, and 30%. Two frequency bands of the ultrasonic transducer are 28kHz and 2MHz. The directions of ultrasonic forcing are the vertical direction and the horizontal direction. The temperatures are two states, i.e., no constant and constant. Experiments are carried out sequentially in order in three cases of no ultrasonic forcing, ultrasonic forcing, and ultrasonic discontinution. In results, it is clarified that the ultrasonic effects the decrease of overpotential to elevate the efficiency of hydrogen production.

Establishment of Conditions for Ultrasonic Welding of Cu sheet (Cu 박판에 대한 초음파 용착 조건 확립)

  • Seo, Jeong-Seok;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.282-287
    • /
    • 2010
  • This paper gives a description of an experimental study of the ultrasonic welding of metals. In ultrasonic metal welding, high frequency vibrations are combined with pressure to join two materials together quickly and securely, without producing significant amount of heat. Ultrasonic metal welder consists of Transducer, Booster, and horn that are designed very accurately to get the natural frequencies and vibration mode. In this study, The horn was designed and analyzed the natural frequency by the modal analysis and harmonic analysis. And using a fiber optic sensor, we measured the amplitude and analyzed the Fast Fourier Transformed result. Using the horn, Ultrasonic metal welding between Cu sheet and Cu sheet of 0.1mm thickness was accomplished under the optimal conditions of static pressure 0.15MPa, vibration amplitude 30% and welding time of 0.28s. This result can be used for ultrasonic metal welding in manufacturing industry.

A Novel Method for Improving the Positioning Accuracy of a Magnetostrictive Position Sensor Using Temperature Compensation (온도 보상을 이용한 자기변형 위치 센서의 정확도 향상 방법)

  • Yoo, E.J.;Park, Y.W.;Noh, M.D.
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.414-419
    • /
    • 2019
  • An ultrasonic based magnetostrictive position sensor (MPS) provides an indication of real target position. It determines the real target position by multiplying the propagation speed of ultrasonic wave and the time-of-flight between the receiving signals; one is the initial signal by an excitation current and the other is the reflection signal by the ultrasonic wave. The propagation speed of the ultrasonic wave depends on the temperature of the waveguide. Hence, the change of the propagation speed in various environments is a critical factor in terms of the positioning accuracy in the MPS. This means that the influence of the changes in the waveguide temperature needs to be compensated. In this paper, we presents a novel way to improve the positioning accuracy of MPSs using temperature compensation for waveguide. The proposed method used the inherent measurement blind area for the structure of the MPS, which can simultaneously measure the position of the moving target and the temperature of the waveguide without any additional devices. The average positional error was approximately -23.9 mm and -1.9 mm before and after compensation, respectively. It was confirmed that the positioning accuracy was improved by approximately 93%.