• Title/Summary/Keyword: Ultrasonic Pressure

Search Result 464, Processing Time 0.026 seconds

Development of Pressure Control System of Contact Transducer for Measurement of Ultrasonic Nonlinear Parameter

  • Lee, In-Ho;Son, Dae-Soo;Choi, Ik-Hwang;Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.576-581
    • /
    • 2007
  • Ultrasonic nonlinearity has been considered as a promising method to evaluate the micro damage of material; however, its magnitude is so small that its measurement is not easy. Especially, when we use contact PZT transducer, if the contacting pressure is not kept in constant during the measurement then there exists extraneous fluctuation in the measured nonlinearity caused by the unstable contact condition, In this paper, we developed a pneumatic control system to keep the contacting pressure of transducer in constant during the measurement and analyzed the effect of contacting pressure to the ultrasonic nonlinearity measurement As a result, we found that the pressure of transducer in our measurement system should be greater than 170 kPa to measure the ultrasonic nonlinear parameter in stable with no dependency on the contacting pressure.

Construction of the Intelligence Stress Predictor for Compression Strength Evaluation (압축강도 평가를 위한 지능형 응력예측기 구축)

  • 박원규;우영환;이종구;윤인식
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.95-101
    • /
    • 2001
  • This work is concerned with construction of the intelligence stress predictor far compression strength evaluation using neural network-ultrasonic waves. The contact pressure in jointed plates was measured by using ultrasonic technique. Neural network is used to evaluate and predict contact pressure from the results of the calibration curves. The organized neural system was leaned with the accuracy of 99%, as a result of learning the ultrasonic echo ratio to the contact pressure measurement between SM45C and STS410 materials. And it could be evaluated and predicted with the accuracy of 90% in the evaluation of ultrasonic echo ratio difference in the same surface roughness and contact pressure, and 85% in the prediction of virtual ultrasonic echo ratio. Thus the proposed stress predictor is very useful for the evaluation and prediction of the contact pressure between SM45C and STS410 materials.

  • PDF

A Study on Correlation Between Pressure Variations and Augmentation of Heat Transfer in Acoustic Fields

  • Oh, Yool-Kwon;Yang, Ho-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1630-1639
    • /
    • 2004
  • The present paper investigated the correlation between the acoustic pressure variations and the augmentation of heat transfer in the ultrasonic induced acoustic fields. The augmentation ratios of heat transfer coefficient were experimentally measured and were compared with the profile of the pressure distribution in the acoustic fields predicted by numerical analysis. For numerical analysis, a coupled finite element-boundary element method (coupled FE-BEM) was applied. The results of the present study reveal that the acoustic pressure is higher near two ultrasonic transducers than other points where no ultrasonic transducer was installed. The augmentation trend of heat transfer is similar with the profile of the acoustic pressure distribution. In other words, as the acoustic pressure increases, the higher augmentation ratio of heat transfer is obtained. Numerical and experimental studies clearly show that the acoustic pressure variations are closely related to the augmentation of heat transfer in the acoustic fields.

Non-Destructive Detection of Hydride Blister in PHWR Pressure Tube Using an Ultrasonic Velocity Ratio Method

  • Cheong Yong-Moo;Lee Dong-Hoon;Kim Sang-Jae;Kim Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.369-377
    • /
    • 2003
  • Since Zr-2.5Nb pressure tubes have a high risk for the formation of blisters during their operation in pressurized heavy water reactors, there has been a strong incentive to develop a method for the non-destructive detection of blisters grown on the tube surfaces. However, because there is little mismatch in acoustic impedance between the hydride blisters and zirconium matrix, it is not easy to distinguish the boundary between the blister and zirconium matrix with conventional ultrasonic methods. This study has focused on the development of a special ultrasonic method, so called ultrasonic velocity ratio method for a reliable detection of blisters formed on Zr-2.5Nb pressure tubes. Hydride blisters were grown on the outer surface of the Zr-2.5Nb pressure tube using a cold finger attached to a steady state thermal diffusion equipment. To maximize a difference in the ultrasonic velocity in hydride blisters and the zirconium matrix, the ultrasonic velocity ratio of longitudinal wave to shear wave, $V_L/V_S$, has been determined based on the flight time of the longitudinal echo and reflected shear echo from the outer surface of the tubes. The feasibility of the ultrasonic velocity ratio method is confirmed by comparing the contour plots reproduced by this method with those of the blisters grown on the Zr-2.5Nb pressure tubes.

Effect of Pressure Variations on Augmentation of Heat Transfer by Ultrasonic Vibrations (초음파 가진시 압력변동이 열전달 향상에 미치는 영향)

  • Yang, Ho-Dong;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1069-1074
    • /
    • 2004
  • This study investigated the effect of pressure variations on augmentation of heat transfer when the ultrasonic waves were applied. The augmentation ratio of heat transfer was experimentally investigated and was compared with the profiles of pressure distributions calculated applying a coupled finite element-boundary element method (coupled FE-BEM). As the ultrasonic intensities increase from 70W to 340W, the velocity of the liquid paraffin is found to increase as well as kinetic energy, This physical behavior known as quasi-Eckart streaming results from acoustic pressure variations in the liquid. Especially, the higher acoustic pressure distribution near two ultrasonic transducers develops more intensive flow (quasi-Eckart streaming), destroying the flow instability. Also, the profile of acoustic pressure variation is consistent with that of augmentation of heat transfer. This mechanism is believed to increase the ratio of hear transfer coefficient.

  • PDF

Preparation of High Quality Safflower (Carthamus tinctorius L.) Seed Extract by High-Pressure Extraction Process

  • Seo, Il-Ho;Choi, Sang-Won
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.4
    • /
    • pp.373-377
    • /
    • 2009
  • Safflower seed extract was prepared by a high-pressure extraction technology and its quality characteristics were compared to that of other conventional extraction techniques, such ultrasonic and reflux extractions. Safflower seeds were extracted with 80% aqueous ethanol by three above extraction methods, and further fractionated with Diaion HP-20 column chromatography to obtain a partially purified safflower seed extract (PPSSE). Among the three extraction techniques examined, the reflux extraction showed the higher yields of EtOH extract and PPE than the ultrasonic and high-pressure extractions. Levels of most phenolic compounds in the EtOH extract of safflower seed are higher in reflux and ultrasonic extractions than the high pressure extraction, but levels of two serotonin aglycones, N-(p-coumaroyl)serotonin (CS) and N-feruloylserotonin (FS), in PPSSE were higher in the high pressure extraction than the reflux and ultrasonic extractions. In addition, color values (L and a) of the PPSSE were higher in the high-pressure extraction than the reflux and ultrasonic extractions, although there were no significant differences in pH and UV maxima absorption spectra among three extraction techniques. These results indicate that the high-pressure extraction technology is a simple and effective extraction for preparation of a high quality of safflower seed extract containing CS and FS with anti-wrinkle activity.

Modeling of Ultrasonic Testing in Butt Joint by Ray Tracing

  • Nam, Young-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.441-447
    • /
    • 2001
  • Ultrasonic wave generation and propagation were modeled to simulate an ultrasonic test. A ray model was used for the modeling. Actual sound pressure distribution of the incident wave from an angle probe was analyzed using an ultrasonic visualization method to incorporate the actual sound pressure distribution in the model. In this method, the sound pressure was expressed by the density of rays and the reflection coefficient of ultrasonic beams. Reflection and mode conversion of rays were computed by the Snells law. Simulation programs for the problem of ultrasonic testing of a butt joint are built using this ray modeling. Simulation results for ultrasonic wave scattering from a defect and A-scan display in ultrasonic testing agreed with the actual experiment results.

  • PDF

A study on Contact Pressure Measurement of SM45C/STS410 Materials by Means of Ultrasonic Waves (초음파에 의한 SM45C/STS410재의 접촉압력측정에 관한 연구)

  • Yi, W.;Yun, I.S.;Jeong, E.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.92-99
    • /
    • 1996
  • The contact pressure in jointed plates was measured by means of an improved ultrasonic technique. In order to get calibration curve, the relationship between contact pressure and ratio of boundary and bottom echo of normal beam probes were obtained for the calibration blocks with various surface roughness. The ratio of boundary and bottom echoes were measured for the upper/under plates locally compressed with uniform pressure, and the distribution of contact pressure was obtaines. The measured pressure has a good agreement with results of FEM analysis. Thus the proposed ultrasonic method in this work is very useful to measure the contact pressure.

  • PDF

The Relation of Enhancement Heat Transfer to Acoustic Pressure by Acoustic Streaming (음향흐름에 의한 음압과 열전달 촉진과의 관계)

  • Yang, Ho-Dong;Oh, Yool-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.591-596
    • /
    • 2005
  • The objectives in the present study are to investigate that the enhancement heat transfer was experimentally measured and was compared with the acoustic pressure obtained by numerical analysis. From the results of the present study, a strong Fluid motion initiated by ultrasonic vibrations can affect heat and mass transfer. This phenomenon. called acoustic streaming, clearly observed by PIV measurement leads to increase in velocity of a Fluid which is a crucial physical concept to explain the enhancement heat transfer. The heat transfer coefficient is increased with increase in the ultrasonic intensities. The largest enhancement heat transfer (about 26%) is measured at the ultrasonic intensity of 300W. Acoustic streaming results from sudden acoustic pressure variations in the liquid. The results of numerical analysis reveal that acoustic pressure is increased by 59.5% at the ultrasonic intensity of 300W. The higher acoustic pressure near four ultrasonic transducers develops more intensive flow destroying the flow instability. Also, the profiles of acoustic pressure variation are consistent with those of enhancement heat transfer.

  • PDF

A Study on the Performance of Diesel Automobile of Ultrasonic Fuel Supply System(I) -About the Droplet Size Distribution of Ultrasonic Fuel Supply System - (초음파(超音波) 연료공급장치용(燃料供給裝置用) 디젤자동차(自動車)의 성능(性能) 향상(向上) 관한 연구(I) -초음파 연료공급장치를 통과한 연료의 분무특성에 대하여-)

  • Choi, D.S.;Seol, J.H.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1994
  • This study carried out to investigate the spray characteristics of diesel oil through out ultrasonic fuel supply system in comparison with conventional. Size of the droplets comprising diesel spray was measured by immersed liquid method at different positions along the spray axis. Droplets distribution diagram was ploted and Sauter Mean Diameter(SMD) was also calculated. The effects of the ultrasonic vibration and injection pressure on the droplet size distribution and SMD were investigated. As the ultrasonic vibration supply SMD decreases on the same injection pressure conditions with conventional injector's. But the effect of ultrasonic vibration decreases with injection pressure increasing.

  • PDF