• Title/Summary/Keyword: Ultrasonic Machining

Search Result 95, Processing Time 0.032 seconds

Micro Hole Machining by EDM Using Insulated Tool Combined with Ultrasonic Vibration of Dielectric Fluid (가공액의 초음파 진동 및 절연 공구를 이용한 미세방전가공)

  • Park, Min-Soo;Chung, Do-Kwan;Lee, Kang-Hee;Chu, Chong-Nam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.180-186
    • /
    • 2011
  • This paper describes a micro electrical discharge machining (MEDM) technique that uses an insulated tool in combination with ultrasonic vibration to drill micro holes. As the machining depth becomes deeper, the dispersion of debris and circulation of the dielectric fluid are difficult to occur. Consequently, machining becomes unstable in the machining region and unnecessary electrochemical dissolution and secondary discharge sparking occur at the tool side face. To reduce the amount of unnecessary side machining, an insulated tool was used. Ultrasonic vibration was applied to the MEDM work fluid to better remove debris. Through these methods, a $1000\;{\mu}m$ thick stainless steel plate was machined by using a $73\;{\mu}m$ diameter electrode. The diameters of the hole entrance and exit were $96\;{\mu}m$ and $88\;{\mu}m$, respectively. It took only 351s to completely drill one hole.

A Study on Preventing Cracks at the Small Hole Exit in Ultrasonic Machining Using a Wax Coating (초음파 미세구멍 관통가공에서 왁스 코팅을 이용한 출구크랙 방지에 관한 연구)

  • Li, Hang;Ko, Tae Jo;Baek, Dae Kyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.105-111
    • /
    • 2015
  • Ultrasonic machining (USM) does not involve heating or any electrochemical effects, and subsequently causes low surface damage, has small residual stress, and does not rely on the conductivity of the workpiece. These characteristics are suitable for the machining of brittle materials, such as glass or ceramics. However, USM for brittle materials generates cracks on the workpiece while machining, especially at the hole exit with a small diameter. In this study, wax coating was used to deposit wax on the back side of the workpiece to decrease the occurrence of cracks at the exit holes in USM, and it was finally removed with a cleaning process. The experimental results show that this technique is beneficial for restricting the occurrence of cracks in glass or ceramics.

Micro EDM with Ultrasonic Work Fluid Vibration for Deep Hole Machining (깊은 구멍 가공을 위한 가공액 초음파 가진 미세 방전가공)

  • Je Sung Uk;Lee Hae Sung;Chu Chong Nam;Kim Duck Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.47-53
    • /
    • 2005
  • Microholes with high aspect ratio are required in microstructures. Among various methods for producing the microhole, micro electrical discharge machining (MEDM) is very effective and useful process. But, it is difficult to machine the high aspect ratio holes below $100\;{\mu}m$ in diameter because machining condition becomes unstable due to bad removal of debris at deep hole. In this paper, ultrasonic vibration is applied to MEDM work fluid to make a high aspect ratio micro hole. It is shown that the vibration is effective in circulating the debris and increasing the machining rate. As a result, produced was a micro hole with $92\;{\mu}m$ entrance diameter, $81\;{\mu}m$ exit diameter and aspect ratio 23.

Machining characteristics on ultrasonic vibration assisted micro-electrical discharge machining of carbon-nanotube reinforced conductive Al2O3 composite (전도성을 가지는 탄소나노튜브강화 알루미나복합소재의 마이크로방전가공에서 초음파진동 부가에 의한 가공특성)

  • Kang, Myung-Chang;Tak, Hyun-Seok;Lee, Chang-Hoon;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.119-126
    • /
    • 2014
  • Micro-holes of conductive ceramic are required in micro structures. Micro-electrical discharge machining (Micro-EDM) is an effective machining method since EDM is as process for shaping hard metals and complex-shaped holes by spark erosion in all kinds of electro-conductive materials. However, as the depth of micro hole increases, the machining condition becomes more unstable due to inefficient removal of debris between the electrode and the workpiece. In this paper, micro-EDM was performed to evaluate machining characteristic such as electrode wear, machining time, taper angle, radial clearance with varying voltage and ultrasonic vibration on 10 vol.% Carbon-nanotube reinforced conductive $Al_2O_3$ composite fabricated by spark plasma sintering in previous research.

Effects of Ultrasonic Vibration on Machined Surface of Aluminium 6061 in Endmill Cutting Process (Al6061의 엔드밀 절삭가공에서 초음파 진동이 가공 표면에 미치는 영향)

  • Jung, Myung-Won;Kwak, Tae-Soo;Kim, Myeong-Kyu;Kim, Geon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.96-102
    • /
    • 2014
  • This study focused on the effects of ultrasonic vibration on a machined surface of Al6061 material in the endmill cutting process. It is known that ultrasonic vibration greatly increases the efficiency of the machining process when cutting or grinding. An ultrasonic vibration table was developed for application to ultrasonic vibration endmill machining experiments.Inthisstudy,the surface roughness and actual depth of the cut measured confirm the effects of ultrasonic vibration. As a result of the experiments, the actual depth of the cut increased during endmill machining when using ultrasonic vibration. The surface roughness was improved with increases in the amplitude of the vibration and the depth of the cut.

A Study on the Ultrasonic Micro-machining and Measurement System (초음파 초정밀 가공 및 측정시스템에 대한 연구)

  • Ju, Jong-Nam;Han, Dong-Cheol;Park, Hui-Jae;Park, Sang-Sin;Je, Seong-Uk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.133-140
    • /
    • 2002
  • Ultrasonic Machining (USM) is widely used in cutting of non-conductive, brittle workpiece materials such as engineering ceramics. However, USM has a limitation in its application to micro machining because problems are occurred in attaching micro tools to the machine and maintaining high precision. Therefore Micro Ultrasonic Machining (MUSM) with WEDM is proposed in this research. The experiments are produced as the change of shaft diameter and abrasive size.