• Title/Summary/Keyword: Ultrasonic Linear Motor

Search Result 89, Processing Time 0.025 seconds

A Study on the Characteristics of Linear Ultrasonic Motor Using Langevin type Piezoelectic Transducer (란쥬반형 압전 진동자를 이용한 선형 초음파 모터의 특성연구)

  • Choi, Myeong-Il;Park, Tae-Gone;Kim, Myeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.137-139
    • /
    • 2003
  • Transducer for ultrasonic linear motor with the symmetric and anti-symmetric modes was studied. The ultrasonic linear motor consists of two Langevin type piezoelectric vibrators that cross at right angles with each other in tip. In order to excite symmetric and anti-symmetric modes, the transducer must have a phase shift of 90 degree in space and time. Therefore, the tip of transducer moves on an elliptical motion. In this paper, the finite element analysis was used to optimize dimension and displacement of the transducer The ultrasonic motor was fabricated using the simulated result and the driving characteristics were measured. No-load velocity was 0.28[m/s] and the maximum efficiency was 30[%] in resonance frequency.

  • PDF

A Characteristic of Linear Ultrasonic Motor using Langevin Type Transducer (Langevin 진동자를 이용한 선형 초음파 모터의 특성)

  • Seo, San-Dong;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.627-630
    • /
    • 2004
  • Transducer for linear ultrasonic motor with symmetric and anil anti-symmetric modes was studied. The transducer was composed of two Langevin-type vibrators that cross at right angles with each other at tip. In order to excite two vibration modes, two Langevin-type vibrators must have 90-degree phase difference with each other. As a result, tip of transducers moves in elliptical motion. Elliptical trajectoric of transducer was analyzed by employing the finite element method. From these results, the ultrasonic motor was fabricated and was measured for characteristics. In this paper compared an ANSYS analysis with an experiment results. The no-road maximum speed was 113.1[cm/s].

  • PDF

A Study on Standing Wave Type Ultrasonic Linear Motors (정재파형 초음파 리니어 모터에 관한 연구)

  • 권재화;이수성;강국진;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.38-43
    • /
    • 2001
  • We developed a new standing wave type ultrasonic linear motor that can be driven bi-directionally. The operation principle of the motor was derived in an analytical form and the detailed structure was designed by the finite element method. Based on the design, a motor sample and a driving circuit were fabricated, and validity of the structure was verified through experiments.

  • PDF

Design and Trial Fabrication of Plate-Type Linear Ultrasonic Motor Using L1-B4 Vibration Mode (L1-B4 진동모드를 이용한 평판형 선형 초음파 모터의 설계 및 시제작)

  • 이종섭;정수현;임기조;임태빈;강성택;채홍인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.861-865
    • /
    • 1998
  • A plate-type linear ultrasonic motor using logitudinal and bending multi-vibration mode was designed and fabricated for the application to card-forwarding device. The stator consisted of PZ-PT-PMS piezoelectric ceramic plate and stainless steel. The performances of the motor were measured. As the experimental results, no-load speed of the motor was 0.6m/s when applied voltage was $80\textrm{V}_{rms}$ in resonance frequency. Starting torque was 1.4 mNm and maximum efficiency was 1.2%.

  • PDF

Piezoelectric ultrasonic linear motor by traveling wave (Traveling wave를 이용한 압전 선형 초음파 모터)

  • Yoon, Jang-Ho;Lee, Won-Hee;Choi, Woo-Chun;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.192-192
    • /
    • 2008
  • This paper represents a piezoelectric ultrasonic linear motor by traveling wave. The motor which is composed of two piezo ceramics, elastic body, and connecting tip is driven by the frictional force between the connecting tip and the linear motion guide. longitudinal and flexural vibrations are made by traveling wave which is generated when the ultrasonic electrical signals with 90 degree phase difference are applied to two ceramics. These vibrations contribute to elliptical motion by mixed mode between longitudinal and transverse mode. A linear movement can be easily obtained by using the elliptical motion. In this paper, the piezoelectric actuator has been intensively simulated by using ATILA to achieve an optimized elliptical motion of it. We could get the elliptical motion from actual experiment through the simulated result.

  • PDF

Design and Fabrication of Novel Linear Ultrasonic Motor (선형 초음파 모터 설계 및 제작)

  • Lee, Dong-Kyun;Han, Deuk-Young;Choi, Ji-Won;Kim, Hyun-Jai;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.776-778
    • /
    • 2003
  • In the paper, the novel linear ultrasonic motor for precision position control was designed and fabricated. It was composed of two piezoelectric actuators with longitudinal ultrasonic fluctuations and shaking beam. When two AC electric fields ($Usin{\omega}t$, $Ucos{\omega}t$) were applied in two piezoelectric actuators respectively, the middle part of shaking beam had an elliptical trajectory. According to experimental results, good symmetrical characteristic of two piezoelectric actuators were obtained.

  • PDF

Design and Fabrication of Novel Linear Ultrasonic Motor (선형초음파 모터의 설계 및 제작)

  • 이동균;한득영;윤석진
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.981-984
    • /
    • 2003
  • A novel linear ultrasonic motor for precision position control was designed and fabricated. It was composed of two piezoelectric actuators with longitudinal ultrasonic fluctuations and shaking beam. When two AC electric fields (Usinwt, Ucoswt) were applied to piezoelectric actuators respectively, the middle part of shaking beam had an elliptical trajectory. According to experimental results, the generative force was proportional to pre-load force but the speed of slider was in inverse proportion. And the bar of shaking beam had a same trajectory with simulation result.