• 제목/요약/키워드: Ultrasonic Guided Method

검색결과 63건 처리시간 0.025초

유도초음파를 이용한 복수기 튜브지지판 영역에서의 결함검출기법 (A Technique for Defect Detection of Condenser Tube in Support Plate Region using Guided Wave)

  • 김용권;박익근;박세준;안연식;길두송
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.36-41
    • /
    • 2012
  • General condensers consist of many tubes supported by tube sheets and support plates to prevent the deflection of the condenser tubes. When a fluid at high pressure and temperature runs over the tubes for the purpose of transferring heat from one medium to another, the tubes vibrate and their surface comes into contact with the support plates. This vibration causes damage to the tubes, such as cracks and wear. We propose an ultrasonic guided wave technique to detect the above problems in the support plate region. In the proposed method, the ultrasonic guided wave mode, L(0,1), is excited using an internal transducer probe from a single position at the end of the tube. In this paper, we present a preliminary experimental verification using a super stainless tube and show that the defects can be discriminated from the support signals in the support region.

Multi-resolution bolt preload monitoring based on the acoustoelastic effect of ultrasonic guided waves

  • Fu, Ruili;Mao, Ruiwei;Yuan, Bo;Chen, Dongdong;Huo, Linsheng
    • Smart Structures and Systems
    • /
    • 제30권5호
    • /
    • pp.513-520
    • /
    • 2022
  • During the long-time service of a bolt, its preload may suffer slight perturbations or significant reductions. It is a dilemma to monitor preload changes at high resolution and full scale. Approaches for bolt preload monitoring with multi-resolution should be developed. In this paper, a simple and effective multi-resolution bolt preload monitoring approach using ultrasonic guided waves (UGW) is proposed. A linear relationship between the time-of-flight (TOF) variation of multi-reflected waves and preload is derived to theoretically reveal the multi-resolution properties of UGW. The variations of TOF before and after the slight preload perturbations are extracted by using a global evaluation method. Experimental results show that the signal-to-noise ratio (SNR) of the 1st, 2nd, and 3rd-reflected UGWs is larger than 20 dB. The resolution of the 2nd-reflected UGW is higher than that of the 1st-reflected UGW and lower than that of the 3rd-reflected UGW. The ultimate detectable resolutions of bolt preload (DRBP) of the 1st and 3th-reflected UGWs are 0.9% and 0.5%, respectively. By using the 1st and 3th-reflected guided waves, the bolt looseness with different degrees can be monitored simultaneously.

Analysis of the Propagation Characteristics of Ultrasonic Guided Waves Excited by Single Frequency and Broadband Sources

  • Kang, To;Song, Sung-Jin;Kim, Hak-Joon;Cho, Young-Do;Lee, Dong-Hoon;Cho, Hyun-Joon
    • 비파괴검사학회지
    • /
    • 제29권6호
    • /
    • pp.570-578
    • /
    • 2009
  • Excitation and propagation of guided waves are very complex problems in pipes due to their dispersive nature. Pipes are commonly used in the oil, chemical or nuclear industry and hence must be inspected regularly to ensure continued safe operation. The normal mode expansion(NME) method is given for the amplitude with which any propagating waveguide mode is generated in the pipes by applied surface tractions. Numerical results are calculated based on the NME method using different sources, i.e., non-axisymmetric partial loading and quasi-axisymmetric loading sources. The sum of amplitude coefficients for 0~nineth order of the harmonic modes are calculated based on the NME method and the dispersion curves in pipes. The superimposed total field which is namely the angular profile, varies with propagating distance and circumferential angle. This angular profile of guided waves provides information for setting the transducer position to find defects in pipes.

Analytical and higher order finite element hybrid approach for an efficient simulation of ultrasonic guided waves I: 2D-analysis

  • Vivar-Perez, Juan M.;Duczek, Sascha;Gabbert, Ulrich
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.587-614
    • /
    • 2014
  • In recent years the interest in online monitoring of lightweight structures with ultrasonic guided waves is steadily growing. Especially the aircraft industry is a driving force in the development of structural health monitoring (SHM) systems. In order to optimally design SHM systems powerful and efficient numerical simulation tools to predict the behaviour of ultrasonic elastic waves in thin-walled structures are required. It has been shown that in real industrial applications, such as airplane wings or fuselages, conventional linear and quadratic pure displacement finite elements commonly used to model ultrasonic elastic waves quickly reach their limits. The required mesh density, to obtain good quality solutions, results in enormous computational costs when solving the wave propagation problem in the time domain. To resolve this problem different possibilities are available. Analytical methods and higher order finite element method approaches (HO-FEM), like p-FEM, spectral elements, spectral analysis and isogeometric analysis, are among them. Although analytical approaches offer fast and accurate results, they are limited to rather simple geometries. On the other hand, the application of higher order finite element schemes is a computationally demanding task. The drawbacks of both methods can be circumvented if regions of complex geometry are modelled using a HO-FEM approach while the response of the remaining structure is computed utilizing an analytical approach. The objective of the paper is to present an efficient method to couple different HO-FEM schemes with an analytical description of an undisturbed region. Using this hybrid formulation the numerical effort can be drastically reduced. The functionality of the proposed scheme is demonstrated by studying the propagation of ultrasonic guided waves in plates, excited by a piezoelectric patch actuator. The actuator is modelled utilizing higher order coupled field finite elements, whereas the homogenous, isotropic plate is described analytically. The results of this "semi-analytical" approach highlight the opportunities to reduce the numerical effort if closed-form solutions are partially available.

전자기유도초음파를 이용한 복수기 전열관 결함신호 특성분석 (Characteristic Analysis of Electromagnetic-ultrasonic Guided Waves for Defect Signals in Condenser Tubes)

  • 최상훈;왕지남
    • 설비공학논문집
    • /
    • 제27권3호
    • /
    • pp.174-178
    • /
    • 2015
  • This paper describes a signal processing technique for identifying signals from defects by using an electromagnetic-ultrasonic guided waves method based on a magnetostrictive sensor that generates a torsional mode (T(0, 1)). Because this technique is based on the digital filtering, the filtered signals provide information on the relationship between the cutoff frequency of band-pass filter and the characteristic of defect signals in heat exchange tubes. To verify the performance of the technique, artificial defects with various thickness reduction ration and shape were machined in titanium tubes, and digital filtering results are reported. The results show that digital filtering provides information to the identify shape of defects and the contact condition between the tube and support ring. Therefore, the proposed technique has good potential as a tool for evaluating the integrity of heat exchange tubes.

유도초음파를 이용한 대구경 배관 적용에 관한 연구 (Application of Thin-Walled Tubes Using Guided Wave)

  • 박상기;이영호
    • 동력기계공학회지
    • /
    • 제12권1호
    • /
    • pp.58-65
    • /
    • 2008
  • A method to test thin-walled tubes by guided ultrasonic wave is reported. The principle is that applicate two types of axially symmetric ultrasonic tube modes and "longitudinal" modes with particle displacement, which is coupled in axial and radial directions for transverse failures and torsional modes, oscillating in the circumferential direction only, for longitudinal failures. Both types of modes propagate along the tube in the axial direction. Therefore, a pulse-echo technique is possible. The pulses are excited and received at one end of the tube without contact electro-dynamic transducers. As soon as the tubes is put into a transducer coil at one end, the test of the whole tube can be accomplished in a few milliseconds. It is not necessary to rotate and transport the tubes during the test.

  • PDF

Detection and location of bolt group looseness using ultrasonic guided wave

  • Zhang, Yue;Li, Dongsheng;Zheng, Xutao
    • Smart Structures and Systems
    • /
    • 제24권3호
    • /
    • pp.293-301
    • /
    • 2019
  • Bolted joints are commonly used in civil infrastructure and mechanical assembly structures. Monitoring and identifying the connection status of bolts is the frontier problem of structural research. The existing research is mainly on the looseness of a single bolt. This article presents a study of assessing the loosening/tightening health state and identifying the loose bolt by using ultrasonic guided wave in a bolt group joint. A bolt-tightening index was proposed for evaluating the looseness of a bolt connection based on correlation coefficient. The tightening/loosening state of the bolt was simulated by changing the bolt torque. More than 180 different measurement tests for total of six bolts were conducted. The results showed that with the bolt torque increases, value of the proposed bolt-tightening index increases. The proposed bolt-tightening index trend was very well reproduced by an analytical expression using a function of the torque applied with an overall percentage error lower than 5%. The developed damage index based on the proposed bolt-tightening index can also be applied to locate the loosest bolt in a bolt group joint. To verify the effectiveness of the proposed method, a bolt group joint experiment with different positions of bolt looseness was performed. Experimental results show that the proposed approach is effective to detect and locate bolt looseness and has a good prospect of finding applications in real-time structural monitoring.

MODE CONTROL OF GUIDED WAVE IN MAGNETIC HOLLOW CYLINDER USING ELECTROMAGNETIC ACOUSTIC TRANSDUCER ARRAY

  • FURUSAWA, AKINORI;KOJIMA, FUMIO;MORIKAWA, ATSUSHI
    • Nuclear Engineering and Technology
    • /
    • 제47권2호
    • /
    • pp.196-203
    • /
    • 2015
  • The aim of this work is to demonstrate a method for exciting and receiving torsional and longitudinal mode guided waves with an electromagnetic acoustic transducer (EMAT) ring array. First of all, a three-dimensional guided wave simulator is developed in order to numerically analyze the propagation of the guided wave. The finite difference time domain method is used for the simulator. Second, two guided wave testing systems using an EMAT ring array are provided: one is for torsional mode (T-mode) guided wave and the other is for longitudinal mode (L-mode). The EMATs used in the both systems are the same in design. A method to generate and receive the T- and L-mode guided waves with the same EMAT is proposed. Finally, experimental and numerical results are compared and discussed. The results of experiments and simulation agree well, showing the potential of the EMAT ring array as a mode controllable guided wave transmitter and receiver.

Design and Fabrication of the Spiral Coils for Guided Wave Magnetostrictive Transducers

  • Choi, Myoung-Seon;Heo, Won-Nyoung;Jun, Jong-Kil
    • 비파괴검사학회지
    • /
    • 제28권6호
    • /
    • pp.496-503
    • /
    • 2008
  • We propose rectangular type spiral coils with folded comers for the applications to low frequency guided wave magnetostrictive transducers and describe a method for making the proposed coils from insulated electrical wire such as enameled copper wire. Expressions for the electrical properties of the coils are also presented and compared with experimental measurements. An overlapped-2-channel folded-comer spiral-coil array is fabricated and applied to a magnetostrictive strip transducer generating and detecting fundamental torsional mode guided waves. From the results we conclude that the design and fabrication method make it possible to use the magnetostrictive transducers optimized for various guided wave applications and also will greatly help engineers gain easy access to the optimized transducers.

유도초음파를 이용한 2.25Cr-1Mo재의 열화도 평가 (Degradation Estimation of 2.25Cr-1Mo Steel by Ultrasonic Guided Wave)

  • 박익근;박은수;이상용;권숙인;조윤호;윤승현
    • 비파괴검사학회지
    • /
    • 제21권4호
    • /
    • pp.415-424
    • /
    • 2001
  • 고온에서 장시간 사용으로 인하여 발생되는 경년열화 평가에는 파괴적인 방법이 신뢰성이 높지만 시험편 채취의 어려움이 있다. 그러므로 비파괴석인 방법에 의한 열화도 평가가 바람직하다. 본 연구에서는 2.23Cr-1Mo강에 대하여 장시간 등온열처리로 모의 열화시험편을 제작하여 고온설비부재에서 발생되는 탄화물의 석출 및 조대화, 분순물의 입계편석 등 금속학적 미세조직을 관찰하고, 미세조직의 변화와 유도 초음파의 전파특성과의 상관관계를 규명하고, 파괴시험치와 그 결과를 비교하여 초음파 비파괴평가에 의한 고온부재의 열화도 평가의 가능성을 실험적으로 검증하고자 한다.

  • PDF