• Title/Summary/Keyword: Ultrasonic Attenuation Coefficient

Search Result 84, Processing Time 0.046 seconds

On Evaluation of Material Properties in Spring Steels by Measurement of Ultrasonic Techniques (초음파법에 의한 스프링강의 재질평가에 관하여)

  • Kim, Sang-Su;Ha, Kyung-Jun;Kim, Seon-Jin
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.41-46
    • /
    • 2002
  • The general purpose of this paper is Evaluation of material properties in spring steels by investigate correlation between ultrasonic attenuation and virker's hardness, charpy impact properties, microstructures. The three test speciments of the $490{\times}90 mm$ plates and 20 mm thick are used but differ in heat treatment, one is rolled plate, the second is quenched and then tempered, and the third is quenched. ultrasonic attenuation were obtained at fifteen locations on the plates. In order to investigate the correlation between hardness ( especially, HV ) and the attenuation, the virker's hardness and the microstructures were observed for three spring steels. also the charpy impact test were carried out at the room temperature in order to investigate the relationship between impact properties and the attenuation. The experimental results obtained from three different spring related to the heat treatment conditions and attenuation coefficient is increased with increasing the hardness(HV). Ultrasonic attenuation coefficients have shawn are ability to distinguish among spring steels.

  • PDF

A Study of the Couplant Effects on Contact Ultrasonic Testing

  • Kim, Young-H.;Song, Sung-Jin;Lee, Sung-Sik;Lee, Jeong-Ki;Hong, Soon-Shin;Eom, Heung-Seop
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.621-626
    • /
    • 2002
  • The amplitude of a back-wall echo depends on the reflection coefficient of the interface between a transducer and a test material when using contact pulse-echo ultrasonic testing. A couplant is used to transmit ultrasonic energy across the interface, but has an influence on the amplitude of the pulse-echo signal. To investigate the couplant effect on pulse-echo ultrasonic testing, back-wall echoes are measured by using various couplants made of water and glycerine in a carbon and austenitic stainless steel specimens. The amplitude of the first back-wall echo and the apparent attenuation coefficient increases with the acoustic impedance of the couplant. The couplant having a higher value of the transmission coefficient is more effective for flaw detection. The reflection coefficient should be known in order to measure the attenuation coefficient of the test material.

A Study on the Evaluation of Material Degradation for 2.25Cr-1Mo Steel by Ultrasonic Measurements (초음파 계측에 의한 2.25Cr-1Mo강의 열화도 평가에 관한 연구)

  • 박은수;박익근;김정석
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.61-67
    • /
    • 2001
  • The remaining life estimation for the aged component is very important because mechanical properties of the compo-nents are degraded with time of service exposure in high temperature etc. The destructive method is widely used for the estimation of material degradation, but it has a difficulty in preparing specimens from in-service industrial facilities. In order to evaluate the feasibility of ultrasonic evaluation method for properties of high temperature materials, 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at 63$0^{\circ}C$ were evaluated by ultra-sonic measurements investigating the change of velocities and attenuation coefficient. In this results, attenuation coefficient was found to be sensitive to material degradation mainly attributed to the change of grain size and the precipitation of impurities in grain boundaries, but velocity was not for all specimens.

  • PDF

Aging Degradation Assessment of Materials by Ultrasonic Characterization (초음파 특성을 이용한 경년열화 평가)

  • Park, Un-Su;Park, Ik-Keun;Kim, Duck-Hee;Ahn, Hyung-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.149-154
    • /
    • 2002
  • An attempt was made to evaluate the changes of microstructures and mechanical properties with increasing aging time in 2.25Cr-1Mo steel. In this study, it was verified the feasibility of the evaluation for degraded 2.25Cr-1Mo steel by isothermal heat treatment at $630^{\circ}C$ up to 1,000 hours using surface SH wave and investigated the change of attenuation coefficient and propagation time. Attenuation coefficient had a tendency to increase according to degradation and propagation time drastically in the beginning of deterioration. A good correlation between ultrasonic attenuation coefficient and hardness was found, which made sure that attenuation coefficient is an potential parameter for evaluation of aging degradation. In addition, it has verified experimentally the frequency dependence of ultrasonic group velocity and attenuation coefficient using wavelet transform.

Acoustic Properties of Solid Materials: Sound Speed, Transmission Coefficient, and Attenuation

  • Roh Heui-Seol;Lee Kang Il;Jung Kyung-Il;Yoon Suk Wang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.525-528
    • /
    • 2002
  • The speed of sound, transmission coefficient, and attenuation are measured around the center frequency 1 and 2 MHz in solid materials such as bone, sediment, rubber, and Lucite materials. Common and different characteristics of such materials in the sound speed, transmission coefficient, and attenuation are discussed. Ambiguities in estimating such acoustic characteristics we also addressed. Ultrasonic properties of the first and second kind waves are clarified for different materials. Discussions are concentrated on classes of sound speed, broadband ultrasonic attenuation (BUA), and correlations of sound speed and BUA with apparent density. New correlations of inverse sound speed square and BUA with apparent density are suggested.

  • PDF

An Onboard Measurement System of Ultrasonic Velocity and Attenuation using the Wavelet Transform

  • Cho, Seog-bin;Ha, Sung-kil;Jung, Sung-Yun;Baek, Kwang-ryul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1826-1828
    • /
    • 2004
  • In this paper, we present an ultrasonic velocity and attenuation measurement system. There are many ultrasonic measurement methods that are used in nondestructive testing applications. They include material property determination, microstructural characterization, and flaw detection. Ultrasonic parameters such as velocity and attenuation are most commonly used in them. Advanced signal analysis which is called "ime-frequency analysis"has been used widely in nondestructive evaluation applications. Wavelet transform is the most advanced technique for processing signals with time-varying spectra. Using the echo waveform gathered by the designed hardware system, we performed simulation of the signal processing algorithms. Then the algorithm is implemented on the system.

  • PDF

A Study on the Evaluation of Mterial Degradaion for 2.25Cr-1Mo Steel using Ultrasonic Attenuation Characterization

  • Kim, Chung-Soek;Park, Ik-Keun;Park, Un-Su;Kim, Hyun-Mook;Kwun, Sook-In;Byeon, Jai-Won
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.319-323
    • /
    • 2001
  • In significant number of energy-related facilities for like thermal power plant or petro-chemical industry, CrMo steels are widely used energy conversion industries. However, these materials undergo precipitation of carbides or intermetallic compounds into grain boundary and change of internal microstructure such as coarsening of precipitation, decrease of solute elements and impurity segregation under more severe service conditions, which results in deterioration of inherent superior material characteristics. In this study, it was verified experimentally the feasibility of the aging degradation evaluation for degraded 2.25Cr-lMo steel specimens prepared by isothermal aging heat treatment at 63$0^{\circ}C$ by high frequency longitudinal ultrasonic and surface SH wave investigating the change of attenuation coefficient analyzed by spectral analysis. Attenuation coefficient had a tendency to increase as degradation proceeded.

  • PDF

Depth estimation for surface-breaking cracks in steel-fiber reinforced concrete using ultrasonic surface waves

  • Ahmet S. Kirlangic;Zafer Iscan
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.373-388
    • /
    • 2022
  • A USW based diagnostic procedure is presented for estimating the depth of surface-breaking cracks. The diagnosis is demonstrated on seven lab-scale SFRC beam specimens, which are subjected to the CMOD controlled three-point bending test to create real bending cracks. Then, the recorded multiple ultrasonic signals are examined with the signal processing techniques, including wavelet transform and two-dimensional Fourier transform, to investigate the relationships between the crack depth and two diagnostic indices, namely the attenuation coefficient and dispersion index (DI). Finally, the reliabilities of these indices for depth estimation are verified with the visually measured crack depths as well as the crack features obtained with a digital image processing algorithm. It is found that the DI outperforms the attenuation coefficient in depth estimation, where this index displays good agreement with the visual inspection for 86% of the inspected specimens.

Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation (초음파 에코파형의 웨이브렛 변환과 비파괴평가에의 응용)

  • Park, Ik-Keun;Park, Un-Su;Ahn, Hyung-Keun;Kwun, Sook-In;Byeon, Jai-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.501-510
    • /
    • 2000
  • Recently, advanced signal analysis which is called "time-frequency analysis" has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and naw sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch.

  • PDF

A Study on the Correlations Between Ultrasonic Parameters and Fracture Toughness (초음파 파라미터와 파괴인성치의 상관관계에 관한 연구)

  • Kim Jeong-Pyo;Park Jae-Sil;Bae Bong-Kook;Seok Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.232-238
    • /
    • 2005
  • In this study the four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. Ultrasonic tests were performed to get the correlation with fracture toughness. The modified theoretical Vary's equation, considering nonlinear response due to material degradation, was proposed for the correlations between ultrasonic parameters and fracture toughness. Experimental results indicate that ultrasonic attenuation coefficient, velocity and nonlinear parameters produce the correlations with fracture toughness and yield strength.