• Title/Summary/Keyword: Ultrasonic Attenuation

Search Result 222, Processing Time 0.028 seconds

Ultrasonic Nondestructive Evaluation(NDE) of Cornposite Materials - A Review -

  • Lee, Ouk-Sub
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.2
    • /
    • pp.25-36
    • /
    • 1989
  • This essay is a general review of the application of ultrasonic NDE techniques to the performance assessment and characterization of composite materials. A brief review of ultrasonic input-output characterization of a composite plate by shear waves is presented. A theoretical development of ultrasonic wave propagation in isotropic and anisotropic media excited, respectively, by a circular transducer and an oscillatory point source is summarized. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into material degradation of fatigued composite laminates. Ultrasonic determination of the elastic constants of a composite plate and an experimental attempt at ultrasonic testing of an isotropic plate containing a crack are also included. A recent effort for the characterization of viscoelastic materials using the ultrasonic NDE technique is outlined. Finally, the reliability of ultrasonic NDE is briefly touched upon.

  • PDF

Parametric density concept for long-range pipeline health monitoring

  • Na, Won-Bae;Yoon, Han-Sam
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.357-372
    • /
    • 2007
  • Parametric density concept is proposed for a long-range pipeline health monitoring. This concept is designed to obtain the attenuation of ultrasonic guided waves propagating in underwater pipelines without complicated calculation of attenuation dispersion curves. For the study, three different pipe materials such as aluminum, cast iron, and steel are considered, ten different transporting fluids are assumed, and four different geometric pipe dimensions are adopted. It is shown that the attenuation values based on the parametric density concept reasonably match with the attenuation values obtained from dispersion curves; hence, its efficiency is proved. With this concept, field engineers or inspectors associated with long-range pipeline health monitoring would take the advantage of easier capturing wave attenuation value, which is a critical variable to decide sensor location or sensors interval.

Study on Hydrogen Effect in TIG Welded Stainless Steel (TIG 용접된 스테인리스강의 수소영향에 대한 연구)

  • Lee, Jin-Kyung;Lee, Sang-Pill;Bae, Dong-Su;Lee, Joon-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.58-63
    • /
    • 2016
  • A stainless steel has high corrosion resistance because of nickel in material, so it is used as materials for transportation and storage of hydrogen. In this study, TIG(tungsten ingot gas) welding was carried out on the stainless steel using the storage vessel of hydrogen. The microscopic structures at each region of TIG welded material such as HAZ, weld and base metals using optical microscope were observed. And the damage behavior of stainless steel that underwent the hydrogen charging using nondestructive evaluation was also studied. Ultrasonic test, which is the most generalized nondestructive technique, was applied to evaluate the relationship between the ultrasonic wave and mechanical properties at each zone of TIG welded stainless steel. The velocity and attenuation coefficients of ultrasonic wave didn't show a remarkable difference at each region of welded stainless steel. However, the attenuation coefficient was the highest at the weld zone when hydrogen charged stainless steel. In addition, acoustic emission test was also used to study the dynamic behavior of stainless steel experienced both hydrogen charging and weld. Lots of AE event at elastic region of stress-strain curve were occurred both the hydrogen charged specimen and the free specimen.

Influence of Microstructure on Reference Target on Ultrasonic Backscattering (기준표적상의 미세구조가 초음파 후방산란에 미치는 영향)

  • Kim, Ho-Chul;Kim, Yong-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1E
    • /
    • pp.38-44
    • /
    • 2010
  • This paper is based on our comments and proposed amendments to the documents, Annex A, Phantom for determining Maximum Depth of Penetration, and Annex B, Local Dynamic Range Using Acoustical Test Objects 87/400/CDV. IEC 61391-2 Ed. 1.0 200X, prepared by IEC technical Committee 87; Ultrasonics. The documents are concerned with the influence of microstructure of reference target material on the ultrasonic backscattering. Previous works on the attenuation due to backreflection and backscattering of reference target materials are reviewed. The drawback to the use of ungraded stainless steel and metallic materials without microstructural data such as, crystal structure, basic acoustic data of sound velocity and attenuation, grain size, roughness and elastic constants has been discussed. The analysis suggested that the insightful conclusion can be made by differentiating the influence arising from target size and microstructure on the backscattering measurements. The microstructural parameters are associated with physical, geometrical, acoustical and mechanical origins of variation with frequency. Further clarification of such a diverse source mechanisms for ultrasonic backscattering would make the target material and its application for medical diagnosis and therapy simpler and more reliable.

A Study on the Application of Ultrasonic Testing for The Interface Integrity Evaluation between Iron and Cement of Porcelain Insulator Cap (자기애자 캡의 금구-시멘트 계면 건전성 평가를 위한 초음파법 활용에 대한 연구)

  • Yoon, Young Geun;Choi, In Hyuk;Son, Ju Am;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.58-65
    • /
    • 2018
  • The life span of the porcelain insulator was made to be 30 years, but currently many of the 154kV NGK porcelain insulators using in Korea are found to have passed the production life. Accidents caused by aged mechanical breakdown can lead to disruption of power supply in some areas, large economic losses, and casualties. Therefore, ultrasonic method, which is one of the non - destructive test methods, is applied as a method for evaluating the integrity of porcelain insulators. In this study, the experiment on the interface of cap was conducted and the difference between the energy difference and the attenuation coefficient of the reflected wave was derived according to the interface state of the steel - cement. The results of this study are expected to be used as the basic data of the ultrasonic testing to evaluate the interface condition of the porcelain insulator cap.

Classification of ultrasonic signals of thermally aged cast austenitic stainless steel (CASS) using machine learning (ML) models

  • Kim, Jin-Gyum;Jang, Changheui;Kang, Sung-Sik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1167-1174
    • /
    • 2022
  • Cast austenitic stainless steels (CASSs) are widely used as structural materials in the nuclear industry. The main drawback of CASSs is the reduction in fracture toughness due to long-term exposure to operating environment. Even though ultrasonic non-destructive testing has been conducted in major nuclear components and pipes, the detection of cracks is difficult due to the scattering and attenuation of ultrasonic waves by the coarse grains and the inhomogeneity of CASS materials. In this study, the ultrasonic signals measured in thermally aged CASS were discriminated for the first time with the simple ultrasonic technique (UT) and machine learning (ML) models. Several different ML models, specifically the K-nearest neighbors (KNN), Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP) models, were used to classify the ultrasonic signals as thermal aging condition of CASS specimens. We identified that the ML models can predict the category of ultrasonic signals effectively according to the aging condition.

Evaluation of fracture Appearance Transition Temperature to Pressure Vessel by Ultrasonics (초음파에 의한 압력용기의 연취성천이온도 평가)

  • Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.373-380
    • /
    • 2000
  • It is useful to use NDE methods to assess the mechanical properties of materials since destructive methods are time-consuming and usually require cutting of sample from the material/component. In the present research, ultrasonic characteristics have been utilized to evaluate changes of mechanical properties due to heat treatment temperature and condition. The attenuation coefficient of ultrasonic wave increased as the heat treatment temperature because the grain size increased in size as the temperature. The attenuation coefficient decreased as the heat treatment has been progressed (quenched, tempered, PWHT). In the case of ultrasonic velocity measurement, velocity difference between quenched and tempered/PWHT was 40 m/s. There was a good relationship between the attenuation coefficient and the toughness. The relationship can be used for the nondestructive evaluation of the forged reactor vessels. Moreover, the method may be effectively used in the field application.

  • PDF

Measurements of Ultrasonic Velocity and Attenuation by Signal Processing Techniques in Time and Frequency Domains (시간 및 주파수 영역에서의 신호 처리 기술에 의한 초음파 속도와 감쇠의 측정)

  • Jang, Young-Su;Kim, Jin-Ho;Jeong, Hyun-Jo;Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.118-128
    • /
    • 1999
  • There are many ultrasonic measurement methods that are used in nondestructive testing applications. Some typical applications include material property determination, microstructural characterization. and flaw detection. Ultrasonic parameters such as velocity and attenuation are most commonly required in these applications. The accuracy and repeatability of testing results are dependent on both the hardware used to generate and receive the ultrasonic waves and on the analysis software for calculating these parameters. In this study, five analysis algorithms were implemented on a computer for measuring wave speed in a pulse echo. immersion testing configuration. In velocity measurements comparisons were made between the overlap. cross-correlation. Fourier transform. Hilbert transform, wavelet transform algorithms. Velocity measurement was applied to an isotropic steel sample using the five analysis algorithms. Frequency-dependent phase/group velocity and attenuation were also measured using the Fourier transform and wavelet transform algorithms on a composite laminate containing voids.

  • PDF

Temperature and Frequency Dependences of Ultrasonic Properties in Commercial MC Nylon Polymers (상용 MC Nylon계 고분자 재료에서 초음파 특성의 온도 및 주파수 의존성)

  • Kim, Myung Deok;Kim, Yong Tae;Lee, Kang Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.509-517
    • /
    • 2012
  • In the present study, temperature and frequency dependences of ultrasonic properties such as attenuation coefficient and phase velocity was investigated for six kinds of commercial MC-Nylon polymer samples. The ultrasonic properties of the samples were measured by using a pulse transmission method in water over a broadband frequency range of 2 to 8 MHz. Water temperature was varied from 10 to $60^{\circ}C$ with the $10^{\circ}C$ interval. The attenuation coefficients of the samples increased with the frequency and the exponent n of frequency dependence ranged within 1.16 to 1.44, slightly deviating from the linear dependence (n=1). The phase velocities of the samples exhibited negative dispersion, i.e., decreasing velocity with increasing frequency, except for ivory sample at $60^{\circ}C$. The frequency-dependent phase velocities of the samples showed the decreasing tendency with increasing temperature.