DOI QR코드

DOI QR Code

Temperature and Frequency Dependences of Ultrasonic Properties in Commercial MC Nylon Polymers

상용 MC Nylon계 고분자 재료에서 초음파 특성의 온도 및 주파수 의존성

  • 김명덕 (알피니언 메디칼시스템(주)) ;
  • 김용태 (한국표준과학연구원 유동음향센터) ;
  • 이강일 (강원대학교 물리학과)
  • Received : 2012.09.03
  • Accepted : 2012.10.12
  • Published : 2012.10.30

Abstract

In the present study, temperature and frequency dependences of ultrasonic properties such as attenuation coefficient and phase velocity was investigated for six kinds of commercial MC-Nylon polymer samples. The ultrasonic properties of the samples were measured by using a pulse transmission method in water over a broadband frequency range of 2 to 8 MHz. Water temperature was varied from 10 to $60^{\circ}C$ with the $10^{\circ}C$ interval. The attenuation coefficients of the samples increased with the frequency and the exponent n of frequency dependence ranged within 1.16 to 1.44, slightly deviating from the linear dependence (n=1). The phase velocities of the samples exhibited negative dispersion, i.e., decreasing velocity with increasing frequency, except for ivory sample at $60^{\circ}C$. The frequency-dependent phase velocities of the samples showed the decreasing tendency with increasing temperature.

본 연구에서는 상용화된 monomer-cast nylon (MC nylon)계 고분자 재료로 만든 6종류의 시편에 대하여 감쇠계수 및 위상속도와 같은 초음파 특성의 온도 및 주파수 의존성을 조사하였다. 시편의 초음파 특성은 수중에서 2 MHz부터 8 MHz까지의 광대역 주파수 범위에 대하여 펄스투과법을 이용하여 측정하였다. 수온은 $10^{\circ}C$부터 $60^{\circ}C$까지 $10^{\circ}C$ 간격으로 변화시켰다. 측정에 사용된 모든 시편에서 감쇠계수는 주파수가 증가함에 따라 증가하였으며, 주파수의 지수 의존성 n이 선형 (n=1)에서 약간 벗어난 1.16부터 1.44이내의 값을 가졌다. 위상속도는 $60^{\circ}C$에서 ivory 시편을 제외한 모든 경우에 대하여 주파수가 증가함에 따라 감소하는 음의 분산 특성을 나타냈다. 주파수에 의존하는 위상속도는 모든 시편에서 온도가 증가함에 따라 감소하는 특성을 나타내었다.

Keywords

References

  1. T. L. Szabo, "Diagnostic Ultrasound Imaging: Inside Out," p. 105, Elsevier Academic Press, New York, (2004)
  2. K. I. Lee and M. J. Choi, "Phase velocity and normalized broadband ultrasonic attenuation in Polyacetal cuboid bone-mimicking phantoms," J. Acoust. Soc. Am., Vol. 121, No. 6, pp. EL263-EL269 (2007) https://doi.org/10.1121/1.2719046
  3. Y. T. Kim, H. C. Kim, M. Inada-Kim, S. S. Jung, Y. H. Yun, M. J. Jho and K. Sandstrom, "Evaluation of tissue mimicking quality of tofu for biomedical ultrasound," Ultrasound in Med. Biol. Vol. 35, No. 3, pp. 472-481 (2009) https://doi.org/10.1016/j.ultrasmedbio.2008.09.005
  4. B. A. Herman and G. R. Harris, "Calibration of miniature ultrasonic receivers using planar scanning technique," J. Acoust. Soc. Am., Vol. 72, No. 5, pp. 1357-1363 (1982) https://doi.org/10.1121/1.388438
  5. K. A. Wear, "The dependencies of phase velocity and dispersion on trabecular thickness and spacing in trabecular bone-mimicking phantoms," J. Acoust. Soc. Am., Vol. 118, No. 2, (2005)
  6. I. W, Cho and J. H. Ahn, "Momomer casting of nylon 6," Polymer(Korea), Vol. 1, No. 2, pp. 101-108 (1977)
  7. M. O'Donnell, E. T. Jaynes and J. G. Miller, "Kramers-Kronig relationship between ultrasonic attenuation and phase velocity," J. Acoust. Soc. Am., Vol. 69, No. 3, pp. 696-701 (1981) https://doi.org/10.1121/1.385566
  8. K. A. Wear, "Group velocity, phase velocity, and dispersion in human calcaneus in vivo," J. Acoust. Soc. Am., Vol. 121, No. 4, pp. 2431-2437 (2007) https://doi.org/10.1121/1.2697436
  9. K. I. Lee, Y. T. Kim and M. J. Choi, "Study on the Dependence of Ultrasonic Phase Velocity on Porosity, Frequency and Propagation Angle in Cancellous Bone ," Journal of the Korean Society for Nondestructive Testing, Vol. 28, No. 2, pp. 112-118 (2008)
  10. K. I. Lee, V. F. Humphrey, B. N. Kim and S. W. Yoon, "Frequency dependencies of phase velocity and attenuation coefficient in a water-satruated sandy sediment from 0.3 to 1.0 MHz," J. Acoust. Soc. Am., Vol. 21, No. 2, pp. 110-119 (2002)
  11. J. R. Asay, D. L. Lamberson and A. H. Guenther, "Pressure and temperature dependence of the acoustic velocities in polymethylmethacrylate," J. Appl. Phys., Vol. 40. No. 4, pp. 1768-1783 (1969) https://doi.org/10.1063/1.1657846