• 제목/요약/키워드: Ultrafast lasers

검색결과 16건 처리시간 0.027초

펨토초 레이저의 원리 및 응용 (Ultrafast Femtosecond Lasers: Fundamentals and Applications)

  • 김영진;김윤석;김승만;김승우
    • 한국정밀공학회지
    • /
    • 제27권6호
    • /
    • pp.7-16
    • /
    • 2010
  • Physical fundamentals of ultrashort femtosecond lasers are addressed along with emerging applications for precision manufacturing and metrology. Femtosecond lasers emit short pulses whose temporal width is in the range of less than a picosecond to a few femtoseconds, thereby enabling extremely high peak-power machining with less thermal damages. Besides, the broad spectral bandwidth of femtosecond lasers constructed in the form of frequency comb permits absolute distance measurements leading to ultraprecision positioning control and dimensional metrology.

극초단 펄스레이저의 분광학 응용 (Spectroscopic Applications of Ultrashort Pulse Lasers)

  • 김동호
    • 한국광학회지
    • /
    • 제1권1호
    • /
    • pp.87-97
    • /
    • 1990
  • With the recent advent of various ultrashort pulse lasers, time-resolved laser spectroscopic techniques have been widely recognized as versatile tools to study ultrafast phenomena in many research areas. These techniques are currently being employed not only to study atomic and molecular physics but to characterize the excited state or the carrier dynamics on surfaces of semiconductors, metals and thin layer materials. Also the sweetching speed measurement of ultrafast electro-optic devices using ultrashort laser pulses becomes important in high-speed electronics. Here, some principles of spectroscopic techniques with ps or fs lasers and their applications are summarized briefly.

  • PDF

극초단 펄스 레이저 응용 미세가공기술 (Ultrafast Laser Micro-machining Technology)

  • 이제훈;손현기
    • 한국정밀공학회지
    • /
    • 제27권2호
    • /
    • pp.7-12
    • /
    • 2010
  • Due to the extremely short interaction time (< $10\times10^{-12}$sec) between laser pulse and material, which enables the minimization of heat affection, ultrafast laser micro-machining has rapidly widened its applications. In this paper, the characteristics of ultrafast laser micro-machining have been reviewed and experimentally demonstrated in laser drilling of silicon wafer and in laser cutting of rigid PCB.

Nonequilibrium Heat Transfer Characteristics During Ultrafast Pulse Laser Heating of a Silicon Microstructure

  • Lee Seong Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1378-1389
    • /
    • 2005
  • This work provides the fundamental knowledge of energy transport characteristics during very short-pulse laser heating of semiconductors from a microscopic viewpoint. Based on the self-consistent hydrodynamic equations, in-situ interactions between carriers, optical phonons, and acoustic phonons are simulated to figure out energy transport mechanism during ultrafast pulse laser heating of a silicon substrate through the detailed information on the time and spatial evolutions of each temperature for carriers, longitudinal optical (LO) phonons, acoustic phonons. It is found that nonequilibrium between LO phonons and acoustic phonons should be considered for ultrafast pulse laser heating problem, two-peak structures become apparently present for the subpicosecond pulses because of the Auger heating. A substantial increase in carrier temperature is observed for lasers with a few picosecond pulse duration, whereas the temperature rise of acoustic and phonon temperatures is relatively small with decreasing laser pulse widths. A slight lagging behavior is observed due to the differences in relaxation times and heat capacities between two different phonons. Moreover, the laser fluence has a significant effect on the decaying rate of the Auger recombination.

양자선 레이저의 공진기 길이 변화에 따른 시간적 및 공간적 특성 (Cavity-Length-Dependent Spectral and Temporal Characteristics of the Quantum Wire Laser)

  • 최영철;김태근
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.1094-1097
    • /
    • 2003
  • In this paper, the cavity-length-dependent spectral and temporal characteristics of a V-groove AlGaAs-GaAs quantum wire (QWR) laser at each subband were investigated. At short cavity lasers less than $300{\mu}m$, a discrete wavelength switching from the n=1 to the n=2 subband occurred due to the increased threshold gain, resulting from the increased cavity loss. Using the characteristic of the wavelength shift from n=1 to the n=2 subband with shortening the cavity length, ultrafast lasing behaviors under gain switching at the n=1 and the n=2 subband transition were demonstrated and compared.

  • PDF

InGaN LED 구조에서 결맞는 bulk phonon과 folded acoustic phonon의 생성 (Generation of coherent bulk and folded acoustic phonon oscillations in InGaN light-emitting diodes structure)

  • Yang Ji-Sang;Jo Yeong-Dal;Lee Gi-Ju;O Eun-Sun;Kim Dae-Sik
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2001년도 제12회 정기총회 및 01년도 동계학술발표회
    • /
    • pp.54-55
    • /
    • 2001
  • Recently, there has been much interests in InGaN/GaN multiple-quantum-well (MQW) structures due to their applicability as optoelectronic devices such as light-emitting diodes (LEDs) and laser diodes [1]. Their ultrafast and physical properties are also of significant interests. Anomalously large acoustic phonon oscillations have been observed using ultrafast lasers in InGaN MQWs [2]. In this study, we have peformed femtosecond pump-probe experiments in the reflection geometry on 5 periods InGaN/GaN MQW LED structure with well width of 20$\AA$ and barrier width of 100$\AA$ at room temperature. (omitted)

  • PDF

Review of laser-plasma physics research and applications in Korea

  • W. Bang;B. I. Cho;M. H. Cho;M. S. Cho;M. Chung;M. S. Hur;G. Kang;K. Kang;T. Kang;C. Kim;H. N. Kim;J. Kim;K.B. Kim;K. N. Kim;M. Kim;M. S. Kim;M. Kumar;H. Lee;H. W. Lee;K. Lee;I. Nam;S. H. Park;V. Phung;W. J. Ryu;S. Y. Shin;H. S. Song;J. Song;J. Won;H. Suk
    • Journal of the Korean Physical Society
    • /
    • 제80권
    • /
    • pp.698-716
    • /
    • 2022
  • Laser plasmas can be produced when high-power laser beams are focused in matter. A focused laser beam of TW(terawatt)-level high power has an extremely strong electric field, so neutral atoms are immediately ionized by the laser electric field, leading to a laser-produced plasma. The laser plasma can be produced by small table-top TW lasers based on the CPA (chirped-pulse amplification) technique, and now they are rather easily available even in university laboratories. In Korea, there are several CPA-based TW (or even petawatt) lasers in a few institutions, and they have been used for diverse laser plasma physics research and applications, including the laser acceleration for electrons and ions, high-power THz (tera-hertz) generation, advanced light sources, high-energy-density plasmas, plasma optics, etc. This paper reviews some of the laser plasma physics research and applications that have been performed in several universities and research institutes.

Laser Drilling of High-Density Through Glass Vias (TGVs) for 2.5D and 3D Packaging

  • Delmdahl, Ralph;Paetzel, Rainer
    • 마이크로전자및패키징학회지
    • /
    • 제21권2호
    • /
    • pp.53-57
    • /
    • 2014
  • Thin glass (< 100 microns) is a promising material from which advanced interposers for high density electrical interconnects for 2.5D chip packaging can be produced. But thin glass is extremely brittle, so mechanical micromachining to create through glass vias (TGVs) is particularly challenging. In this article we show how laser processing using deep UV excimer lasers at a wavelength of 193 nm provides a viable solution capable of drilling dense patterns of TGVs with high hole counts. Based on mask illumination, this method supports parallel drilling of up over 1,000 through vias in 30 to $100{\mu}m$ thin glass sheets. (We also briefly discuss that ultrafast lasers are an excellent alternative for laser drilling of TGVs at lower pattern densities.) We present data showing that this process can deliver the requisite hole quality and can readily achieve future-proof TGV diameters as small $10{\mu}m$ together with a corresponding reduction in pitch size.

GaAs/AlGaAs 양자우물 구조에서 Impulsive Stimulated Raman Scattering 방법에 의한 결맞는 포논의 생성 (Generation of Coherent LO Phonons in GaAs/AlGaAs MQW's by the Impulsive Stimulated Raman Scattering)

  • 이기주;이대수;조영달;임용식;김대식
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2000년도 제11회 정기총회 및 00년 동계학술발표회 논문집
    • /
    • pp.24-25
    • /
    • 2000
  • After the invention of the femtosecond pulse lasers, generating and detecting the coherent optical phonons in various materials became possible. In bulk GaAs, which is a polar material, the coherent LO phonons are known to be generated by the ultrafast screening of the surface space-charge fields. However, little is known about the generation mechanisms of coherent phonons in GaAs quantum structures. (omitted)

  • PDF