• Title/Summary/Keyword: Ultra-wideband antenna

Search Result 137, Processing Time 0.027 seconds

High resolution groud penetrating image radar using an ultra wideband (UWB) impulse waveform (초광대역 임펄스를 이용한 고해상도 지반탐사 이미지 레이더)

  • Park Young-Jin;Kim Kwan-Ho;Lee Won-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.101-106
    • /
    • 2005
  • A ground penetrating image radar (GPR) using an ultra wideband (UWB)impulse waveform is developed for non destructive detection of metallic pipelines buried under the ground. Dielectric constant of test field is measured and then a GPR system is designed for better detection up to 1 meter deep. By considering total path loss, volume of complete system, and resolution, upper and lower frequencies are chosen. First, a UWB impulse for the frequency bandwidth of the impulse is chosen with rising time less than 1 ns, and then compact planar UWB dipole antenna suitable for frequency bandwidth of a UWB impulse is designed. Also, to receive reflected signals, a digital storage oscilloscope is used. For measurement, a monostatic technique and a migration technique are used. For visualizing underground targets, simple image processing techniques of A-scan removal and B-scan average removal are applied. The prototype of the system is tested on a test field in wet clay soil and it is shown that the developed system has a good ability in detecting underground metal objects, even small targets of several centimeters.

LTE / WiMAX Dual Band Antenna Design for Ultra-wideband Communications (초광대역 통신용 LTE/WiMAX 이중대역 안테나 설계)

  • Kim, Gyeong-Rok;Kang, Sung-Woon;Hong, Yong-Pyo;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.441-444
    • /
    • 2018
  • In this paper, a microstrip antenna for LTE / WiMAX is designed for UWB communication. The proposed antenna is designed for FR-4 (er = 4.3), 29[mm] x 45[mm], and can be used in the LTE frequency band of 1.82[GHz] and the WiMAX frequency band of 3.5[GHz]. Studio 2014 was used. The simulation results show 1.785[dB] at 1.82[GHz] and 1.720[dB] at 3.5[GHz]. S-parameters were also found to be less than -10dB (WSWR2: 1) in the desired frequency band. In order to achieve broadband, miniaturization, low cost and low loss, Width, length, width of transmission line, etc. were calculated. Therefore, it is considered that the applicable antenna can be applied satisfying the desired condition.

  • PDF

Antenna Selection Scheme Using Noncoherent Receivers for Off-Body High Data Rate WBAN (신체 외부 고속 통신에서 Noncoherent 수신기 기반의 안테나 선택 기법)

  • Park, Jong-Seok;Hwang, Jae-Ho;Jang, Sung-Jeen;Kim, Jae-Moung;Lee, Hyung-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.88-97
    • /
    • 2009
  • As the development of wireless techniques, transmission technology of body area network plays an important role in realizing a welfare society by combining IT and BT when applying to vehicles. Off-body WBAN (Wireless Body Area Network) systems for video data transmission require low battery consumption and high data rate. To satisfy the requirement, UWB has been considered as a promising candidate for high rate WBAN. This paper introduces an antenna selection technique for ultra-wideband based off-body WBAN system with low complexity. In this paper, we propose an antenna selection scheme using non-coherent receiver for off-body high data rate WBAN system. The proposed receiver antenna selection method takes advantage of the characteristic of BPPM (Binary Pulse Position Modulation). With the property of BPPM, this scheme calculates the approximate SNR of the received signal with non-coherent receiver.

  • PDF

Uni-Planar Elliptical UWB Antenna with Band-Notched Characteristic and Modified Ground Plane (변형된 접지면과 대역 저지 특성을 갖는 단일 평면 타원형 UWB 안테나)

  • Park Gil-Young;Shin Ho-Sub;Oh Byoung-Cheol;Kim Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.12 s.103
    • /
    • pp.1194-1205
    • /
    • 2005
  • This paper proposes a uni-planar elliptical element UWB antenna with band-notched characteristic and modified pound plane fed by CPW. The antenna achieves VSWR below 2 for UWB band(3.1 GHz${\~}$10.6 GHz). In addition, a band-notched characteristic is achieved by inserting a horizontal slot on the radiation element to avoid the interference with 5 GHz(5.15 GHz${\~}$5.825 GHz) band limited by IEEE 802.1la. The antenna has a thin profile, compact size, and ease of manufacture by adopting a CPW feed structure without any additional background plane. Measured data show that the proposed antenna has good return loss below -10 dB, about 2.1 dB${\~}$4.75 dB maximum gain over the bandwidth, omni-directional radiation patterns, linear phase response.

A Study on Design and Fabrication of SRD Impulse Generator and Antenna for Ground Penetrating Radar System (지반투과 레이더 시스템을 위한 SRD 임펄스 발생기 및 안테나의 설계 및 제작에 관한 연구)

  • Kim, Hyoung-Jong;Shin, Suk-Woo;Choi, Gil-Wong;Choi, Jin-Joo;Shin, Shang-Youal
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.509-516
    • /
    • 2011
  • In this paper, a ground penetrating radar(GPR) system is implemented for landmine detection. The performance of the GPR system is associated with the characteristics of local soil and buried target. The choice of the center frequency and the bandwidth of the GPR system are the key factors in the GPR system design. To detect a small and shallow target, the higher frequencies are needed for high depth resolution. We have been designed, fabricated and tested a new impulse generator using step recovery diodes. The measured impulse response has an amplitude of 6.2V and a pulse width of 250ps. The implemented GPR system has been tested real environmental conditions and has proved its ability to detect a small buried target.

Internal Ultra-Wideband Antenna for Wireless USB Dongles (무선 USB 동글을 위한 내장형 광대역 안테나)

  • Kim, Jin-Hyuk;Hwang, Keum-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1638-1639
    • /
    • 2011
  • 본 논문에서는 초소형 무선 USB 동글 장치를 위한 광대역 접힌(folded) 모노폴 안테나를 제안하였다. 제안된 안테나는 CPW 급전으로부터 삼지창 형상의 선로를 적용하여 광대역 특성을 구현하였다. 최종 설계된 안테나의 크기는 $16{\times}44.8{\times}3.5\;mm^3$이며, low-profile의 무선 USB 동글용 안테나에 적합하다. 제안된 안테나는 $S_{11}$ < -10 dB 기준으로 2.28~10.8 GHz의 공진 주파수 대역을 가지므로 WiBro (2.3~2.4 GHz), Bluetooth (2.4~2.484 GHz), WiMAX (2.5~2.7 GHz, 3.4~3.6 GHz), satellite DMB (2.605~2.655 GHz), 802.11b/g/a WLAN (2.4~2.485 GHz, 5.15~5.825 GHz), UWB(3.1~10.6 GHz)의 무선 대역을 지원 할 수 있다. 측정된 평균 이득의 범위는 -3.41 dBi 에서 -0.84 dBi 이다.

  • PDF

Analysis of Impulse Radio Channel Property by Characterizaing UWB antenna (초광대역 안테나 특성을 고려한 임펄스 채널의 전파특성)

  • Song, Jong-Hwa;Park, Young-Jin;Ki, Moung-O;Kim, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2339-2341
    • /
    • 2005
  • 본 논문은 주파수 영역과 시간 영역에서 초광대역 (Ultra Wideband UWB) 안테나의 임펄스 응답 특성을 고려한 채널측정 연구에 대해 발표하고자 한다. 임펄스 전파 채널 측정을 위해 UWB conical monopole 안테나를 설계하였고, 설계한 안테나의 임펄스 응답을 도출하였다. 안테나의 특성이 임펄스 전파 채널측정에 주는 영향을 무반향 반사실에서 다중경로 환경과 무반사 환경을 구현하여 측정하였다. 측정을 통하여 안테나의 dispersive한 특성과 ringing이 임펄스 전파 채널에 영향을 미침을 확인했고, 이러한 결과를 바탕으로 정확한 임펄스 채널 측정을 위해 사용한 UWB 안테나의 특성을 고려해야 함을 확인하였다.

  • PDF

Sectorial Form UWB Antenna with a CPW-fed Uni-Planar (CPW 급전 단일 평면 부채꼴형 UWB 안테나 설계 및 제작)

  • Kim, Nam;Son, Gui-Bum;Park, Sang-Myeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.305-314
    • /
    • 2007
  • In this paper, we suggested a CPW-fed UWB antenna with uni-planar sectoral structure. The area where radiation device face ground is designed to have the shape of tapered slot based on exponential function. We modified a rectangular bow-tie dipole structure antenna and thus formed a multi-resonant mode. From this, we expanded the impedance bandwidth and made a feature satisfying VSWR of less than 2 between $3.1\sim10.6GHz$. The test result showed that the return loss less than -10 dB was met in the full-band UWB system and maximum gain of $0.9\sim3.1dB$ was made with the half-power beamwidth of $40.1\sim89.9^{\circ}$ on XY plane(Theta, $Phi=90^{\circ}$) and the full band. By using CPW-fed structure with no ground on the back of the substrate, the suggested antenna is easy to design and its miniaturization is also possible.

Log-Periodic Bow-tie Dipole Array(LPBDA) Antenna for UWB Communications (UWB 통신용 대수 주기 보우타이 다이폴 배열 안테나)

  • Yeo, Jun-Ho;Lee, Jong-Ig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4095-4100
    • /
    • 2011
  • In this paper, a log periodic bow-tie dipole array (LPBDA) antenna for UWB communications is investigated. Bow-tie shaped dipole elements are used instead of general dipole elements for LPDA antennas and the input reflection coefficient and realized gain characteristics of the LPBDA as a function of a flare angle are analyzed. It turns out that as the flare angle of the bow-tie dipole elements is increased, the lowest operating frequency is shifted toward lower frequency and the operating frequency band is increased, but the average gain is decreased. However, the gain variation of the LPBDA is much decreased and the front-back ratio is improved compared to the LPDA. Standard LPDA and LPBDA with a flare angle of 13 degrees are fabricated on an FR4 substrate with a dielectric constant of 4.4 and a thickness of 1.6 mm. Measured gain for the LPDA ranges from 4 to 6.5 dBi at 3.1 to 10.6 GHz band, while that for the LPBDA is in the range of 4.2 to 5 dBi.

A Study on the Mobile Communication System for the Ultra High Speed Communication Network (초고속 정보통신망을 위한 이동수신 시스템에 관한 연구)

  • Kim, Kab-Ki;Moon, Myung-Ho;Shin, Dong-Hun;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.1-14
    • /
    • 1998
  • In this paper, Antenna, LNA, Mixer, VCO, and Modulation/Demodulation in Baseband processor which are the RF main components in Wireless LAN system for ultra high-speed communications network are studied. Antenna bandwidth and selective fading due to multipath can be major obstacles in high speed digital communications. To solve this problem, wide band MSA which has loop-structure magnetic antenna characteristics is designed. Distributed mixer using dual-gate GaAs MESFET can achieve over 10dB LO/RF isolation without hybrid, and minimize circuit size. As linear mixing signal is produced, distortions can be decreased at baseband signals. Conversion gain is achieved by mixing and amplification simultaneously. Mixer is designed to have wide band characteristics using distributed amplifier. In VCO design, Oscillator design method by large signal analysis is used to produce stable signal. Modulation/Demodulation system in baseband processor, DS/SS technique which is robust against noise and interference is used to eliminate the effect of multipath propagation. DQPSK modulation technique with M-sequences for wideband PN spreading signals is adopted because of BER characteristic and high speed digital signal transmission.

  • PDF