• Title/Summary/Keyword: Ultra-wide band

Search Result 373, Processing Time 0.024 seconds

Ultra-Wideband Antenna Having a Frequency Band Notch Characteristic (주파수 대역 저지 특성을 갖는 초광대역 안테나)

  • Choi Woo-Young;Jung Ji-Hak;Chung Kyung-Ho;Choi Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.199-203
    • /
    • 2005
  • In this paper, a novel compact and frequency band-notch antenna for Ultra-Wideband(UWB) applications is proposed. The designed antenna not only shows good impedance bandwidth for ultra-wideband but has band notch characteristic for the frequency band of $5.15\~5.825\;GHz$ limited by IEEE 802.1la and HIPERLAN/2. To achieve both properties of wide band and band notch, the techniques of a concaved ground plane and inserted U-shaped thin slot into planar radiator are used respectively. A manufactured antenna satisfied VSWR<2 for the frequency band of $2.95\~11.7\GHz$ except the limited band of $4.92\~5.866\;GHz$.

Design and Implementation of UWB Antenna with Dual Band Rejection Characteristics (이중 대역저지 특성을 가지는 UWB 안테나 설계 및 구현)

  • Yang, Woon Geun;Nam, Tae Hyeon
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.413-419
    • /
    • 2018
  • An UWB(Ultra Wide Band) antenna with band rejection characteristics is designed and implemented. A planar radiation patch with slot, parasitic elements on both sides of strip and ground plane on back side consist the proposed antenna. The slot in the radiation patch and parasitic elements contribute corresponding bands rejection characteristics. The slot contributes for WiMAX(World interoperability for Microwave Access, 3.30~3.70 GHz) band rejection and parasitic elements contribute for X-Band(7.25~8.395 GHz) rejection. Ansoft's HFSS(High Frequency Structure Simulator) was used to design the proposed antenna and performance simulations. Simulation result showed VSWR(Voltage Standing Wave Ratio) less than 2.0 for UWB band except for dual rejection bands of 3.30~3.86 GHz and 7.21~8.39 GHz. And VSWR measurement result for the implemented antenna shows less than 2.0 for 3.10~10.60 GHz band except dual rejection bands of 3.25~3.71 GHz and 7.25~8.46 GHz.

Performance of Tactics Mobile Communication System Based on UWB with Double Binary Turbo Code in Multi-User Interference Environments (다중 사용자 간섭이 존재하는 환경에서 이중이진 터보부호를 이용한 UWB 기반의 전술이동통신시스템 성능)

  • Kim, Eun-Cheol;Seo, Sung-Il;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.39-50
    • /
    • 2010
  • In this paper, we analyze and simulate the performance of a tactics mobile communication system based on ultra wide band (UWB) in multi-user interference (MUI) environments. This system adopts a double binary turbo code for forward error correction (FEC). Wireless channel is modeled a modified Saleh and Valenzuela (SV) model. We employ a space time block coding (STBC) scheme for enhancing system performance. System performance is evaluated in terms of bit error probability. From the simulation results, it is confirmed that the tactics mobile communication system based on UWB, which is encoded with the double binary turbo code, can achieve a remarkable coding gain with reasonable encoding and decoding complexity in multi-user interference environments. It is also known that the bit error probability performance of the tactics mobile communication system based on UWB can be substantially improved by increasing the number of iterations in the decoding process for a fixed cod rate. Besides, we can demonstrate that the double binary turbo coding scheme is very effective for increasing the number of simultaneous users for a given bit error probability requirement.

An Algorithm for Estimating Ep/No of UWB Signals (UWB 신호의 Ep/No 추정 알고리즘)

  • Im, Sung-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1316-1322
    • /
    • 2004
  • Recently, the UWB (ultra wide-band) wireless communication technology, which provides high data transmission and is capable of linearly trading between throughput and signal-to-noise ratio (SNR), has drawn much attention for short-range wireless networks. Fully exploiting its notable features and minimizing its interference to coexisting other systems require the knowledge of SNR's at receivers In this paper, we propose an algorithm for estimating the pulse energy to noise ratio Ep/No of UWB signal with utilization of outputs from a correlator at a receiver, and evaluate the performance of the proposed algorithm through computer simulation. According to simulation results, the maximum standard deviation is about 1 13 dB with a block size of 500. Except for Ep/No=O and 2 dB cases with a block size of 500, no errors greater than 3 dB were observed in all the remaining experiments. Generally speaking, it improves as the true Ep/No, increases and as the block size increases A notable feature of the proposed algorithm is that it does not reduce the effective throughput because the estimation process does not require sending additional training signal of any specific format.

Bit Error Rate Improvement Scheme for Transmitted Reference UWB Systems (Transmitted Reference UWB 시스템을 위한 비트오율 향상 기법)

  • Kim, Jae-Woon;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.540-547
    • /
    • 2009
  • In this paper, we propose a transceiver structure that can effectively improve BER(Bit Error Rate) performance for TR-UWB (Transmitted Reference Ultra Wide Band) systems based on impulse radio. Unlike coherent UWB systems that are too complex for practical implementation while having good BER performances, the complexity of the TR-UWB systems is quite low since they transmit data with the corresponding reference signals and demodulate the data through correlation using these received signals. However, the BER performance in the conventional TR-UWB systems is affected by SNR (Signal-to-Noise Ratio) of the reference templates used in the correlator. To this end, we propose a receiver structure that can effectively improve the BER performance by increasing the SNR of reference templates. Simulation results reveal that the proposed scheme achieves significant BER improvement as compared to the conventional TR-UWB systems.

Performance of PN Code Based Time Hopping Sequences in M-ary Ultra Wide Band Multiple Access Systems Using Equicorrelated Signal Sets (동일 상관 신호군을 이용하는 M-ary UWB 다원 접속 시스템에서 PN 부호 기반 시간 도약 시퀀스의 성능)

  • 양석철;신요안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10A
    • /
    • pp.816-829
    • /
    • 2003
  • In this paper, we evaluate the performance of PN (Pseudo Noise) code based time hopping sequences for M-ary UWB (Ultra Wide Band) multiple access systems using the equicorrelated signal sets. In particular, we consider two different types of M-ary UWB systems in UWB indoor wireless multipath channels: The first type of the systems (System #1) has identical symbol transmission rate regardless of the number of symbols M since the length of signal pulse train is fixed while M increases, and the second type of the systems (System #2) has the same bit transmission rate regardless of M since the length of signal pulse train is extended according to the increase of M. We compare the proposed systems with those using the ideal random time hopping sequence in terms of the symbol error rate performance. Simulation results show that the PN code based time hopping sequence achieves quite good performance which is favorably comparable to that of the ideal random sequence. Moreover, as M increases, we observe that System #2 shows better robustness against multiple access interference than System # 1.

An Improved TDoA Localization with Particle Swarm Optimization in UWB Systems (UWB 시스템에서 Particle Swarm Optimization을 이용하는 향상된 TDoA 무선측위)

  • Le, Tan N.;Kim, Jae-Woon;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.87-95
    • /
    • 2010
  • In this paper, we propose an improved TDoA (Time Difference of Arrival) localization scheme using PSO (Particle Swarm Optimization) in UWB (Ultra Wide Band) systems. The proposed scheme is composed of two steps: re-estimation of TDoA parameters and re-localization of a tag position. In both steps, the PSO algorithm is employed to improve the performance. In the first step, the proposed scheme re-estimates the TDoA parameters obtained by traditional TDoA localization to reduce the TDoA estimation error. In the second step, the proposed scheme with the TDoA parameters estimated in the first step, re-localizes the tag to minimize the location error. The simulation results show that the proposed scheme achieves a more superior location performance to the traditional TDoA localization in both LoS (Line-of-Sight) and NLoS (Non-Line-of-Sight) channel environments.

Design of Ultra Wide Band Radar Transceiver for Foliage Penetration (수풀투과를 위한 초 광대역 레이더의 송수신기 설계)

  • Park, Gyu-Churl;Sun, Sun-Gu;Cho, Byung-Lae;Lee, Jung-Soo;Ha, Jong-Soo
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • This study is to design the transmitter and receiver of short range UWB(Ultra Wide Band) imaging radar that is able to display high resolution radar image for front area of a UGV(Unmanned Ground Vehicle). This radar can help a UGV to navigate autonomously as it detects and avoids obstacles through foliage. The transmitter needs two transmitters to improve the azimuth resolution. Multi-channel receivers are required to synthesize radar image. Transmitter consists of high power amplifier, channel selection switch, and waveform generator. Receiver is composed of sixteen channel receivers, receiver channel converter, and frequency down converter, Before manufacturing it, the proposed architecture of transceiver is proved by modeling and simulation using several parameters. Then, it was manufactured by using industrial RF(Radio Frequency) components and all other measured parameters in the specification were satisfied as well.

Improved Throughput Scaling of Large Ultra-Wide Band Ad Hoc Networks (거대 초 광 대역 애드 혹 네트워크에서의 개선된 용량 스케일링)

  • Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.303-310
    • /
    • 2014
  • We show improved throughput scaling laws for an ultra-wide band (UWB) ad hoc network, in which n wireless nodes are randomly located. First, we consider the case where a modified hierarchical cooperation (HC) strategy is used. Then, in a dense network of unit area, our result indicates that the derived throughput scaling depends on the path-loss exponent ${\alpha}$ for certain operating regimes due to the power-limited characteristics. It also turns out that the HC protocol is dominant for 2 < ${\alpha}$ < 3 while using the nearest multihop (MH) routing leads to a higher throughput for ${\alpha}{\geq}3$. Second, the impact and benefits of infrastructure support are analyzed, where m base stations (BSs) are regularly placed in UWB networks. In this case, the derived throughput scaling depends on ${\alpha}$ due to the power-limited characteristics for all operating regimes. Furthermore, it is shown that the total throughput scales linearly with parameter m as m is larger than a certain level. Hence, the use of either HC or infrastructure is helpful in improving the throughput of UWB networks in some conditions.

Ultra-Wide Band Sensor Tuning for Localization and its Application to Context-Aware Services (위치추적을 위한 UWB 센서 튜닝 및 상황인지형 서비스에의 응용)

  • Jung, Da-Un;Choo, Young-Yeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.1120-1127
    • /
    • 2008
  • This paper presents implementation of localization system using UWB (Ultra-Wide Band) sensors and its experimental results along with development of context-aware services. In order for precise measurement of position, we experimented various conditions of pitch angles, yaw angles, number of sensors, height of tags along with measuring errors at each installation. As an application examples of the location tracking system, we developed an intelligent health training management system based on context-aware technology. The system provides appropriate training schedule to a trainee by recognizing position of the trainee and current status of gymnastic equipments and note the usage of the equipment through a personal digital assistant (PDA). Error compensation on position data and moving direction of the trainee was necessary for context-aware service. Hence, we proposed an error compensation algorithm using velocity of the trainee. Experimental results showed that proposed algorithm had made error data reduce by 30% comparing with the data without applying the algorithm.