• Title/Summary/Keyword: Ultra-super critical

Search Result 32, Processing Time 0.03 seconds

Characteristics of the Post-Weld Heat Treatment of Chrome Low Alloy Material for a Power Plant Boiler (발전 보일러용 크롬 저합금강의 용접후열처리 특성)

  • Whe, Jae-Hoon;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.6 no.4
    • /
    • pp.56-62
    • /
    • 2010
  • This study investigated characteristics of the post-weld heat treatment of SA213-T23, which was developed for water wall of the ultra super critical power boiler. The temperature of post weld heat treatment should be $730^{\circ}C$ or higher to reduce hardness of the deposit metal and heat affected zone. Coincidently, the temperature should remain $760^{\circ}C$ or lower to prevent hardness of the base metal from dropping. Hardness decline of deposit metal was trivial according to time when the holding time of heat treatment at $740^{\circ}C$ of post-weld heat treatment gradually increased from initial 15 minutes.

  • PDF

Investigation on the forging process of HIP rotor for USC power plant (USC 발전용 HIP Rotor의 단조 공정 연구)

  • Kim D. K.;Kim Y. D.;Kang S. T.;Kim D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.479-482
    • /
    • 2005
  • To improve the efficiency of fossil power plant, the higher steam temperature and pressure are required. Ultra super critical(USC) system meets very well this requirement. The HIP rotor is one of the most important parts of turbine in USC system and its material is easy to crack during hot forging. In this study, the upsetting and cogging process far $12\%Cr$ ESR ingot was analyzed and it is suggested a optimum process to avoid surface crack. The results were verified by test product with 4,200 tonnage press.

  • PDF

Development of Ultra-Supercritical (USC) Power Plant (초초임계압(USC) 화력발전기술 개발)

  • Chang, Sung-Ho;Kim, Bum-Soo;Min, Taek-Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.205-210
    • /
    • 2012
  • For environmental reasons and because of our limited energy resources, high-efficiency power generation technology will be necessary in the future. Ultra-supercritical (USC) power generation technology is the key to managing the greenhouse gas problems and energy resource problems discussed in the Kyoto Protocol to the United Nations Framework Convention on Climate Change. Other countries and manufacturers are trying to build commercial power plants. In this paper, an efficient method of achieving near-zero emission operation of a high-efficiency fossil power plant using USC power generation is discussed. Development of USC power generation in Korea has been supported by the Korean government in two phases: Phase I was USC key technology development from 2002 to 2008, and Phase II is USC development and technology optimization from 2010 to 2017.

Characterization of the High-temperature Isothermal Aging in USC Ferritic Steel Using Reversible Permeability (가역투자율을 이용한 초초임계압 페라이트기 강의 고온 등온열화 평가)

  • Kim, Chung-Seok;Ryu, Kwon-Sang;Nahm, Seung-Hoon;Lee, Seung-Seok;Park, Ik-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.3
    • /
    • pp.100-105
    • /
    • 2009
  • The high-temperature isothermal aging is studied in ultra-supercritical steel, which is attractive to the next generation of power plants. The effects of microstructure on reversible permeability are discussed. Isothermal aging was observed to coarsen the tempered carbide ($Cr_{23}C_6$), generate the intermetallic ($Fe_2W$) phase and grow rapidly during aging. The dislocation density also decreases steeply within lath interior. The dynamic coercivity, measured from the peak position of the reversible permeability profile decreased drastically during the initial 500 h aging period, and was thereafter observed to decrease only slightly. The variation in dynamic coercivity is closely related to the decrease in the number of pinning sites, such as dislocations, fine precipitates and the martensite lath.

Catalytic Technology for NOx Abatement using Ammonia (암모니아를 환원제로 이용한 NOx 저감 촉매 기술)

  • Park, Soon Hee;Lee, Kwan-Young;Cho, Sung June
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.211-224
    • /
    • 2016
  • Three way catalyst has been used extensively for the exhaust gas treatment for the internal combustion gasoline engine. While, numerous research efforts have been directed to develop various technologies for the abatement of exhaust gas from diesel engine. Diesel engine operating under lean condition produces large amount of NOx and the corresponding catalytic technology employing vanadium supported titania using ammonia has been commercialized for heavy duty vehicle. Recently, the Cu catalyst supported on zeolite has been investigated for NOx abatement using ammonia because of its critical importance for ultra low emission vehicle. The current review shows the recent trend in research and development for zeolite based copper catalysts, which are mainly used as catalysts for selective catalytic reduction using ammonia, are one of the aftertreatment technologies for effectively removing nitrogen oxides from diesel exhaust.

Effect of Aging Time on Creep Property of Cast Haynes 282 Superalloy (초내열합금 Haynes 282 주조합금의 크리프강도에 미치는 시효처리의 영향)

  • Kim, Young-Ju;Ahn, Yong-Sik
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.13-20
    • /
    • 2017
  • Ni-base superalloy Haynes 282 was developed as a gas turbine material for use in the ultra-super-critical stage (USC) of next-generation coal-fired power plants. Temperatures in the USC stage exceed $700^{\circ}C$ during operation. In spite of its important role Haynes 282 in increasing the performance of high-pressure turbines, as a result of its high-temperature capability, there is little information on the microstructure, deformation mechanism, or mechanical properties of the cast condition of this alloy. The aim of present study is to examine the creep properties of cast alloy and compare with wrought alloy. The ${\gamma}^{\prime}-precipitates$ were coarsen with the increase of aging time ranging from 8 to 48 hrs. A creep test performed at $750^{\circ}C$ showed faster minimum creep rate and shorter rupture lifetime with the aging time. A creep test performed showed only a slight difference in the rupture life between cast and wrought products. Based on the creep test results, the deformation mechanism is discussed using fractographs.

The Leakage and Rotordynamic Analysis of A Combination-Type-Staggered-Labyrinth Seal for A Steam Turbine (스팀 터빈용 조합형 엇갈린 래버린스 실의 누설량 및 동특성 해석)

  • Ha, Tae-Woong;Lee, Yong-Bok;Kim, Seung-Jong;Kim, Chang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.45-54
    • /
    • 2004
  • Governing equations and numerical solution methods are derived for the analysis of a combination-type-staggered-labyrinth seal used in high performance steam turbines. A bulk flow is assumed for each combination-type-staggered-labyrinth cavity. Axial flow through a throttling labyrinth strip is determined by Neumann's leakage equation and circumferential flow is assumed to be completely turbulent in the labyrinth cavity. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion near the centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the combination-type-staggered-labyrinth seal. Theoretical results of leakage and rotordynamic characteristics for the IP4-stage seal of USC (ultra super critical) steam turbine are shown with the effect of sump pressure, the number of throttling labyrinth strip, and rotor speed.

Small Punch Creep Evaluation and Microstructure Analysis in Aged P122 Steel (P122강 열화재의 소형펀치 크리프 평가 및 미세조직 분석)

  • Kim, Bum-Joon;Kim, Moon-K;Dung, Hoang Tien;Lim, Byeong-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • This paper investigates the influence of aging time on creep properties via a small punch creep test and evaluates the microstructural change of P122 steel at $600^{\circ}C$. The area fraction of precipitates was quantitatively analyzed to identify the relationship between the creep rupture life and precipitates was coarsening behavior of precipitates along the grain boundaries was also investigated for various aging times. It is found that this coarsening behavior led to a loss of solution hardening and rewulte in a hardness drop and a reduction of creep life.

Evaluation of High Temperature Particle Erosion Resistance of Vanadium-Boride Coating (Vanadium-Boride코팅의 고온 내입자침식성 평가)

  • Lee, E.Y.;Kim, J.H.;Jeong, S.I.;Lee, S.H.;Eum, G.W.
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.76-84
    • /
    • 2015
  • The components in ultra super critical (USC) steam turbine, which is under development for high efficient power generation, are encountering harsher solid particle erosion by iron oxide scales than ones in the existing steam turbines. Therefore, the currently used boride coating will not be able to hold effective protection from particle erosion in USC system and should be replaced by new particle erosion resistant coatings. One of the best protective coatings developed for USC steam turbine parts was found to be vanadium-boride (V-boride) coating which has a hardness of about 3000 HV, much higher than that of boride, 1600~2000 HV. In order to evaluate particle erosion resistance of the various coatings such as V-boride, boride and Cr-carbide coatings at high temperature, particle erosion test equipments were designed and manufactured. In addition, erosion particle velocity was simulated using FLUENT software based on semi-implicity method for pressure linked equations revised (SIMPLER). Based on experimental results of this work, the vanadium-boride coating was found to be superior to others and to be a candidate coating to replace the boride coating.

Development of Assessment Methodology on Creep-Fatigue Crack Behavior for a Grade 91 Steel Structure (Mod.9Cr-1Mo 강 구조의 크리프-피로 균열 거동 평가법 개발)

  • Lee, Hyeong-Yeon;Lee, Jae-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • In this study, an assessment method on creep-fatigue crack initiation and crack growth for a Mod.9Cr-1Mo steel (ASME Grade 91) structure has been developed with an extension of the French RCC-MR A16 procedure. The current A16 guide provides defect assessment procedure for a creep-fatigue crack initiation and crack growth for an austenitic stainless steel, but no guideline is available yet for a Mod.9Cr-1Mo steel which is now widely being adopted for structural materials of future nuclear reactor system as well as ultra super critical (USC) thermal plant. In the present study an assessment method on creep-fatigue crack initiation and crack growth is provided for the FMS (Ferritic-Martensitic Steel) and assessment on the creep-fatigue crack behavior for a structure has been carried out. The assessment results were compared with the observed images from a structural test.