• Title/Summary/Keyword: Ultra-high

Search Result 3,386, Processing Time 0.036 seconds

Evaluation on Mechanical and Mixing Properties of Ultra-high Strength Concrete with fck=150MPa (150MPa 초고강도 콘크리트의 배합 및 재료역학특성 평가 연구)

  • Kang, Hoon;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.113-120
    • /
    • 2010
  • Ultra-High Strength Concrete (UHSC) demands a clear presentation of its mechanical properties, as distinct from normal strength concrete, and an evaluation of the serviceability of high-rise buildings that use ultra-high strength concrete. Ultra-high strength concrete fck=150MPa was manufactured with pre-mix cement, and an experimental study was conducted to evaluate the mixing properties and compressive strength, with the major variables being unit cement contents, water-binder ratio, and type of pre-mix cement. The test result showed that 150MPa concrete requires about 6~7 minutes of mixing time until each of the materials (ordinary Portland cement, silica fume, blast-furnace slag powder and anhydrite) are sufficiently revitalized. The slump flow of fresh concrete was shown to be about 700~800mm with the proper viscosity. The average value of concrete compressive strength was shown to be about 70% in 7 days, 85% in 14 days, and 95% in 28 days, for 56 days of concrete material age.

Mixing and Strength Properties of 150MPa Ultra High Strength Concrete (150MPa 초고강도 콘크리트 배합 및 강도발현 특성)

  • Ahn, Jong-Mun;Kang, Hoon;Kim, Jong-Keun;Shin, Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.373-376
    • /
    • 2008
  • Ultra High Strength Concrete(UHSC) is necessary a clear presentation about mechanical property that is different from normal strength concrete and an evaluation of serviceability of high rise building which is used ultra high strength concrete. To mixing ultra high strength concrete with $f_{ck}$=150MPa pre-mix cement were manufactured and experimental study were conducted to evaluated on the mixing properties and compressive strength with major variables as unit cement contents, water-binder ratio and type of pre-mix cement. As a test result, it is shown that the concrete mixing time is required about 5$^{\sim}$6 minute untill the each materials(ordinary portland cement, silica fume, blast-furnace slag powder and anhydrite) are revitalized enough. A slump flow of fresh concrete are shown about 700$^{\sim}$750mm with proper viscosity. And average value of concrete compressive strength are shown about 77% in 7days, 87% in 14days and 102% in 56days for 28days of concrete material age. From this experimental study, a proper mixture proportion of pre-mix cement are recommended about 54$^{\sim}$59% OPC, 25$^{\sim}$30% blast-furnace slag powder and 10$^{\sim}$15% silica fume for mix the ultra high strength concrete with $f_{ck}$=150MPa.

  • PDF

Analytical Study on Flexural Behavior of Alkali-Activated Slag-Based Ultra-High-Ductile Composite (알칼리활성 슬래그 기반 초고연성 복합재료의 휨거동 해석)

  • Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.158-165
    • /
    • 2019
  • The purpose of this study is to investigate analytically the flexural behavior of beam reinforced by an alkali-activated slag-based fiber-reinforced composite. The materials and mixture proportion were selected to manufacture an alkali-activated slag-based fiber-reinforced composite with high tensile strain capacity over 7% and compressive strength and tension tests were performed. The composite showed a compressive strength of 32.7MPa, a tensile strength of 8.43MPa, and a tensile strain capacity of 7.52%. In order to analyze the flexural behavior of beams reinforced by ultra-high-ductile composite, nonlinear sectional analysis was peformed for four types of beams. Analysis showed that the flexural strength of beam reinforced partially by ultra-high-ductile composite increased by 8.0%, and the flexural strength of beam reinforced fully by ultra-high-ductile composite increased by 24.7%. It was found that the main reason of low improvement in flexural strength is the low tensile strain at the bottom of beam. The tensile strain at bottom corresponding to the flexural strength was 1.38% which was 18.4% of tensile strain capacity of the composite.

Surface modification and induced ultra high surface hardness by nitrogen ion implantation of low alloy steel

  • Olofinjana, A.O.;Bell, J.M.;Chen, Z.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.157-158
    • /
    • 2002
  • A surface hardenable low alloy carbon steel was implanted with medium energy (20 - 50KeV) $N_2^+$ ions to produced a modified hardened surface. The implantation conditions were varied and are given in several doses. The surface hardness of treated and untreated steels were measured using depth sensing ultra micro indentation system (UMIS). It is shown that the hardness of nitrogen ion implanted steels varied from 20 to 50GPa depending on the implantation conditions and the doses of implantation. The structure of the modified surfaces was examined by X-ray photoelectron spectroscopy (XPS). It was found that the high hardness on the implanted surfaces was as a result of formation of non-equilibrium nitrides. High-resolution XPS studies indicated that the nitride formers were essentially C and Si from the alloy steel. The result suggests that the ion implantation provided the conditions for a preferential formation of C and Si nitrides. The combination of evidences from nano-indentation and XPS, provided a strong evidence for the existence of $sp^3$ type of bonding in a suspected $(C,Si)_xN_y$ stoichiometry. The formation of ultra hard surface from relatively cheap low alloy steel has significant implication for wear resistance implanted low alloy steels.

  • PDF

Analytical evaluation and study on the springback according to the cross sectional form of 1.2GPa ultra high strength steel plate (1.2GPa급 초고강도강판의 단면 형태에 따른 스프링백에 관한 해석적 평가 및 연구)

  • Lee, Dong-Hwan;Han, Seong-Ryeol;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.17-22
    • /
    • 2019
  • Currently, studies on weight reduction and fuel efficiency increase are the most important topics in the automotive industry and many studies are under way. Among them, weight reduction is the best way to raise fuel efficiency and solve environmental pollution and resource depletion. Materials such as aluminum, magnesium and carbon curing materials can be found in lightweight materials. Among these, research on improvement of bonding technology and manufacturing method of materials and improvement of material properties through study of ultrahigh strength steel sheet is expected to be the biggest part of material weight reduction. As the strength of the ultra hight strength steel sheet increases during forming, it is difficult to obtain the dimensional accuracy as the elastic restoring force increases compared to the hardness or high strength steel sheet. It is known that the spring back phenomenon is affected by various factors depending on the raw material and processing process. We have conducted analytical evaluations and studies to analyze the springback that occurs according to the cross-sectional shape of the ultra high tensile steel sheet.

A Study on the Forming of Automotive Front Side Member Part with Ultra High Strength Steel of DP980 (980MPa급 초고장력 강판의 자동차 프런트 사이드 멤버 부품 성형에 관한 연구)

  • Cha, C.H.;Lee, S.K.;Ko, D.C.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.39-44
    • /
    • 2009
  • This paper is concerned with forming technology of an automotive front side member part with ultra high strength steel sheet of DP980. The forming technology considered in this paper is the draw & form type, which installs the upper pad and lower pad to produce the complicated shape of ultra high strength steel sheet. In order to produce sound product, comparison between form type and draw & form type and between draw type and draw & form type are investigated by FE-analysis. FE-analysis is carried out with commercial sheet metal forming analysis S/W, DYNAFORM. It was shown from FE-analysis that the draw & form type satisfied the required specifications such as the dimensional accuracy and soundness of automotive front side member part. The effectiveness of the analytical result was verified by the experiment. From this investigation, the draw & form type is proved to be able to supply useful forming technology in forming ultra high strength steel.

Autogenous Shrinkage of Ultra-high Strength Concrete according to W/B and Aggregate Kinds (W/B 및 골재암종 변화에 따른 초고강도 콘크리트의 자기수축특성)

  • Jung, Sang-Woon;Kim, Tae-Seon;Lee, Hong-Kyu;Han, Dong-Yeop;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.127-128
    • /
    • 2014
  • The aim of this research is selecting an economical aggregate type for ultra-high strength concrete with 80 to 120 MPa of compressive strength. As the tests, the effect of water-to-binder ratios and types of aggregate on autogenous shrinkage of ultra-high strength concrete were evaluated. as the results of a series of tests performed, the slump flow was satisfied the target range of 600 ± 100 mm, and the concrete mixture with RLA showed higher elastic modulus than the other cases. For the autogenous shrinkage preventing performance, in the case of water-to-binder ratio of 15, and 20 %, the mixture with BA showed slightly improved autogenous shrinkage reducing effect than the mixture with RLA while the mixture with RLA showed better performance at 25 % of water-to-binder ratio. Therefore, based on the tests results of slump flow, elastic modulus, and autogenous shrinkage, the RLA is considered as a better aggregate type for this purpose.

  • PDF

Ultra-fine Grained Aluminum Alloy Sheets fabricated by Roll Bonding Process

  • Kim, Hyeong-Uk;Tsuji, Nobuhiro
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.6.2-6.2
    • /
    • 2009
  • Ultra-fine grained (UFG) Al alloys, which have submicron grain structures, are expected to show outstanding high strength at ambient temperature and excellent superplastic deformation at elevated temperatures and high strain rate. In order to get the UFG microstructure, various kind of severe plastic deformation (SPD) processes have been developed. Among these processes, accumulative roll bonding (ARB) process is a promising process to make bulky Al sheets with ultrafine grained structure continuously. The purpose of the present study is to clarify the grain refinement mechanism during the ARB process and to investigate on the effects of ultra-fine grained structure on the mechanical properties. In addition, UFG AA8011 alloy (Al-0.72wt%Fe-0.63wt%Si) manufactured by the ARB had fairly large tensile elongation, keeping on the strength. In order to clarify the reason for the increase of elongation in the UFG AA8011 alloy, detailed microstructural and crystallographic analysis was performed by TEM/Kikuchi-line and SEM/EBSP method. The unique tensile properties of the UFG AA8011 alloy could be explained by enhanced dynamic recovery at ambient temperature, owing to the large number of high angle boundaries and the Al matrix with high purity.

  • PDF

An Experimental Study on the Influence of Types of Mineral Admixtures and Cement on the Properties of Ultra-High Strength Concrete (초고강도 콘크리트의 특성에 미치는 시멘트 종류 및 혼화재 종류의 영향에 관한 실험적 연구)

  • Kim Duk-Hyun;Kang Hoon;Lee Sang-Soo;Song Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.261-264
    • /
    • 2004
  • In this study, the experiment was carried out to investigate and analyze the strenth properties and flowability of ultra-high strength concrete accroding to types of mineral admixtures and cements. The main experimental variables were water/binder ratio $25.0\%$, water content $160kg/m^3$ and mineral admixtures such as fly ash, silica fume and meta kaolin. According to the test results, the principle conclusions are summarized as follows 1) In case of using admixtures, superplasticizer amount need more than plain concrete. 2) According to kinds of admixtures and cements, the viscosity of concrete show much difference. 3) The autogeneous shrinkage of ultra-high strength concrete is profitable that use admixture, and heat of hydration is desirable that apply considering countermeasure enough in the advance. 4) Meta kaolin is excellent in side but has viscosity enlargement efficiency a little. But, problem estimates that is not to make design strength to and $70N/mm^2$ if use mixing condition with water-binder ratio properly.

  • PDF

An Experimental Study on the Fluidity and Strength Properties of Multi Component Ultra-High Strength Concrete (다성분계 초고강도콘크리트의 유동특성 및 강도특성에 관한 실험적 연구)

  • Kim, Dong-Pai;Choi, Se-Jin;Lee, Seong-Yeon;Lee, Sang-Soo;Song, Ha-Young;Kim, Eul-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.449-452
    • /
    • 2006
  • In this study, recently, more highly effective construction materials are needed for a reasonable cause and economical structure system is required as the construction structures become more multi storied, large-sized and diversified. Also, the experiment was not carried out to investigate and analyzed the strength properties and flowability of ultra-high strength accroding to the types of mineral admixtures. Therefore, this is an experimental study to compare and analyze the influence of cementitious materials type on the fluidity and the strength properties of ultra-high strength concrete. For this purpose, it has decided to do the mix proportions of concrete according to the type of cementitious materials (fly ash, blsat furnace slag, silica fume, slag cement) and W/B(23.5, 27.5, 31.5%) has selected. And then we conducted an experiment to find out basic properties of the ultra-high strength concrete such as slump-flow, O-lot and the age of specimens(3, 7, 28, 56days) for compressive strength.

  • PDF