• Title/Summary/Keyword: Ultra-Wideband Radiation

Search Result 58, Processing Time 0.028 seconds

A Study on Ultra-Wideband Patch Antenna with Modified Barrel Shape (변형된 항아리형 초 광대역 패치안테나의 설계에 관한 연구)

  • Kim, Sun-Hyo;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.263-270
    • /
    • 2016
  • This paper implemented an ultra-wideband(: UWB) antenna by using a modified barrel-shaped patch antenna. The designed UWB patch antenna was optimized to match UWB technical specifications by considering the sizes of barrel circle and oval(notch) which is distance between the patch and contact surface and designed antenna was implemented by $10mm(R1){\times}21.8mm$ size. Optimal values on the basis of simulated reflective loss results, the surface current distribution of designed patch antenna was analyzed in order to check operation mode of antenna and wideband mechanism. Experimental results of implemented UWB antenna, Return loss of UWB antenna the voltage standing wave ratio was 2 or less in the 1.775-13.075 GHz band, VSWR in 2 or less. And the maximum gain of approx. 1-3 dBi was found in 3.1-10.6 GHz. This result satisfied the characteristics of ultra-wideband and the proposed antenna will be applicable to an ultra-wideband system.

A Planar Reversed-Triangle Monopole Antenna for UWB Communication (UWB 통신을 위한 평판 역삼각형 모노폴 안테나)

  • Choi, Hyung-Seok;Choi, Kyoung;Hwang, Hee-Yong
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.109-112
    • /
    • 2011
  • In this paper, we proposed a planar reversed triangle monopole antenna for UWB(Ultra Wideband) communication. RF-60A substrate of 0.64 mm thickness and 6.15 relative permitivity and 0.035 mm conductor of thickness and loss tangent 0.0025 is used for implementation. We have used Ansoft $HFSS^{TM}$(High Frequency Structure Simulator) to simulate the proposed antenna. The proposed antenna showed return losses about -10 dB, nearly omni-directional radiation patterns and maximum gains are over -5 dBi at the frequency band from 3.1 GHz to 10.6 GHz for ultra wide band communication.

  • PDF

The Characteristics Analysis of Ultra Wideband Printed Antenna using FDTD Method (FDTD법을 이용한 초광대역 평판형 안테나의 해석)

  • Jang, Yong-Woong
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.911-918
    • /
    • 2013
  • The proposed print antenna using Finite Difference Time Domain(FDTD) method is analyzed in this paper. A low radiation resistance and an ultra-wide band of this antenna are also presented. The propagation process of the reflected wave and the electric field distribution in the time domain are calculated in respectively. The antenna parameters are optimized for the maximum band width, return loss, input impedance, and radiation pattern in the frequency domain using Fourier transforming. The experimental bandwidth of the antenna is 1.85GHz~6.35GHz for the VSWR less than or equal to 2.0. The measured results are relatively in good agreement with the FDTD results. The proposed antenna can be applied to various applications such as UWB, broadcasting-network system.

An Ultra Wideband Printed Monopole Antenna Using Modified Ground Plane (변형된 접지면을 이용한 초광대역 프린티드 모노폴 안테나)

  • Kim Myoung-Bum;Jung Jong-Ho;Park Ikmo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.3 s.94
    • /
    • pp.260-269
    • /
    • 2005
  • In this paper, we propose a microstrip line fed printed monopole antenna which has an ultra-wideband characteristic. Proposed antenna can improve the bandwidth characteristic with the taper structure formed by modified ground plane and radiating element. Measured impedance bandwidth ratio of the antenna is more than 30:1; from the lower frequency of 0.89 GHz to the upper frequency of more than 30 GHz for VSRW$\leq$2. The antenna has conical radiation pattern that has low radiation gain to $\theta$=0$^{\circ}$ direction and higher radiation gains as $\theta$ increases.

A Ultra-Wideband Two-Arm Self-Complementary Sinuous Antenna (두 개의 팔을 가진 초광대역 자기상보형 시뉴어스 안테나)

  • Lee, Ho Sang;Yoo, Tae Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.257-267
    • /
    • 2015
  • This paper presents a ultra-wideband sinuous antenna that operates in a whole frequency range (0.824~5.85 GHz) of Cellular/GSM-800, GSM900, ISM, GPS, DCS/GSM1800, PCS/GSM1900, WCDMA/UMTS/IMT2000, WiBro, WLAN and WiMax. The proposed antenna, which is composed of two sinuous arms, is designed as a self-complementary structure in order to have frequency-independent characteristics. It also uses a wideband balun of Klopfenstein taper structure to match to $50{\Omega}$. Experimental results show that the -10 dB return loss bandwidth of the proposed antenna is 5.24 GHz that ranges from 0.76 to 6 GHz, which covers all the frequency bands of the various wireless services. Within the entire operating frequency range, the measured radiation patterns in both E-plane and H-plane show nearly constant bidirectional broadside beams and the maximum antenna gain is measured to fall between 2.32~6.01 dBi.

Performance Evaluation of Antipodal Vivaldi Antenna in the Time- and Frequency-Domains for IR-UWB Systems Application (IR-UWB 시스템 응용을 위한 시간- 및 주파수-영역에서의 앤티포달 비발디 안테나 성능 평가)

  • Koh, Young-Mok;Kim, Keun-Yong;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.159-168
    • /
    • 2012
  • In this paper, we designed the antipodal vivaldi antenna for IR-UWB systems application and evaluated IR-UWB antenna performance for the ultra wideband impulse signal transmission in the time- and frequency-domain. The designed antipodal vivaldi antenna was fabricated using FR-4 substrate which thickness 1.6 mm, dielectric constant ${\epsilon}_r=4.7$ and $tan{\delta}=0.002$. We measured the return loss, far filed radiation pattern at the anechoic chamber in the frequency-domain. We also performed the pulse fidelity analysis in the time-domain using nano-second impulse signal transmission and demonstrated the feasibility of ultra wideband signal stable transmission in the UWB band. The designed and fabricated antipodal vivaldi antenna could be emitting and receiving the IR-UWB signal while preserving low pulse distortion and good radiation pattern in time- and frequency-domain.

Design and Fabrication of Small UWB Antenna (소형 UWB 안테나 설계 및 제작)

  • Bae, Jin-Woo;Ko, Ji-Hwan;Cho, Young-Ki
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.221-224
    • /
    • 2005
  • In this paper, We have designed, fabricated and measured a stacked planar antenna for Ultra-Wideband communication. Radiation parts of the antenna have exponential curve and fed by strip feeding network. We have used the HFSS of Ansoft to simulate the antenna. It was designed to work on a substrate Teflon of thickness 1.575mm and relative permittivity 3.2. The proposed antenna covered the entire UWB band( 3.1GHz $\sim$ 10.6GHz ) for S11$\leq$l0dB. Also the proposed antenna show a good characteristics, linear phase, omni -directional pattern lot UWB applications. Besides the measured results have a reasonable agreement with the simulated results.

  • PDF

A Compact UWB and Bluetooth Slot Antenna for MIMO/Diversity Applications

  • Gao, Peng;He, Shuang
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.309-312
    • /
    • 2014
  • A novel compact pattern diversity slot antenna for ultra-wideband (UWB) and Bluetooth applications is presented. This antenna consists of two modified coplanar waveguides that feed staircase-shaped radiating elements, wherein two different fork-like stubs are placed at the $45{\circ}$ axis. The measured results show that this proposed antenna operates from 2.3 GHz to 12.5 GHz, covering Bluetooth, WLAN, WiMAX, and UWB. The performance of radiation patterns and the corresponding envelope correlation coefficient prove this antenna is suitable for MIMO/diversity systems. Also, the antenna's compact size makes it a good candidate for portable devices.

Design of an Ultra-Wideband Antenna Using a Ring Resonator with a Notch Function

  • Lee, Jung-Nam;Kwon, Heon-Kook;Kang, Byung-Su;Lee, Kwang-Chun
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1075-1083
    • /
    • 2013
  • This paper describes an ultra-wideband (UWB) antenna that uses a ring resonator concept. The proposed antenna can operate in the entire UWB, and the IEEE 802.11a frequency band can be rejected by inserting a notch stub into the ring resonator. The experiment results indicate that the measured impedance bandwidth of the proposed antenna is 17.5 GHz (2.5 GHz to at least 20 GHz). The proposed UWB antenna has omnidirectional radiation patterns with a gain variation of 3 dBi (1 dBi to 4 dBi).

Three-Channel Output Multiplexer Design Using Band-Pass Filter and Ultra-Wideband Antenna

  • Lee, Jung Nam;Park, Jong Kweon
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.100-105
    • /
    • 2016
  • We have designed a three-channel output multiplexer (OMUX) using a band-pass filter and an ultra-wideband (UWB) antenna. The proposed band-pass filter is composed of an inner rectangular loop, an outer open stub, and a defected ground structure. The outer open stub can be used to control the pass band, and the inner rectangular loop can improve the insertion loss characteristics of the band-pass filter. The proposed band-pass filter, UWB antenna, and OMUX are fabricated and measured. The designed OMUX can cover the band group 1 (3,168-4,752 MHz) of WiX system. The measured radiation patterns are close to those of a conventional dipole antenna and the measured antenna gain varies from 1.8 dBi to 3 dBi over the operating frequency range.