• Title/Summary/Keyword: Ultra-Wideband Radiation

Search Result 58, Processing Time 0.022 seconds

Design of an Internal Antenna with Near-Omnidirectional H-Plane Radiation Pattern over Ultra-wide Bandwidth

  • Lee, Young-Ki;Hong, Seok-Jin;Kim, Jeong-Pyo;Choi, Jae-Hoon
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.62-67
    • /
    • 2010
  • In this paper, an ultra-wideband internal antenna for use in mobile applications is proposed. The proposed antenna has symmetrical bi-arm structures printed on the top and bottom of the substrate, and it occupies a compact area of 10 mm ${\times}$ 10 mm ${\times}$ 1 mm. The designed antenna has an impedance bandwidth from 3 GHz to 12 GHz and near omnidirectional radiation patterns over the frequency band of interest. The group delay between two antennas fabricated using the proposed design is less than 0.8 ns, and the maximum gain variation is about 3.16 dB.

A Small Ultra-Wideband (UWB) Antenna with Combination of Electric-Magnetic Radiators (전기-자기계 방사체 결합형 소형 초광대역 안테나)

  • Kim, Yong-Jin;Jung, Chang-Won;Kim, Young-Bong;Kwon, Do-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.33-37
    • /
    • 2009
  • In this paper, a printed small Ultra-Wideband (UWB) antenna with directive radiation characteristics based on combination of electric-magnetic radiators is presented. The combinations of the electric and magnetic type antennas result in the directive radiation patterns for all observed UWB frequency band. Simple combination of dipole antenna and loop antenna is also presented to show that proper configuration of electric radiator and magnetic radiator can produces directive radiation characteristics. The target frequency is from 3.1 GHz to 10.6 GHz with size of $15\;mm{\times}31\;mm$. A proto-type of the combined antenna is simulated, fabricated and measured. Simulation and experimental results of input impedance and gain characteristics of the proposed antenna are presented. There are good agreements between the simulated and measured VSWR curves. Also, the results show the directive radiation characteristics with small antenna form factor over the target frequency range.

Generation of Ultra-Wideband Terahertz Pulse by Photoconductive Antenna (광전도안테나에 의한 광대역테라헤르츠파의 발생특성)

  • Jin Yun-Sik;Kim Geun-Ju;Shon Chae-Hwa;Jung Sun-Shin;Kim Jeehyun;Jeon Seok-Gy
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.6
    • /
    • pp.286-292
    • /
    • 2005
  • Terahertz wave is a kind of electromagnetic radiation whose frequency lies in 0.1THz $\~$10THz range. In this paper, generation and detection characteristics of terahertz (THz) radiation by photoconductive antenna (PCA) method has been described. Using modern integrated circuit techniques, micron-sized dipole antenna has been fabricated on a low-temperature grown GaAs (LT-GaAs) wafer. A mode-locked Ti:Sapphire femtosecond laser beam is guided and focused onto photoconductive antennas (emitter and detector) to generate and measure THz pulses. Ultra-wide band THz radiation with frequencies between 0.1 THz and 3 THz was observed. Terahertz field amplitude variation with antenna bias voltage, pump laser power, pump laser wavelength and probe laser power was investigated. As a primary application example. a live clover leaf was imaged with the terahertz radiation.

Design of an Ultra-Wideband LPDA Antenna for the Feeder of an Airborne Spinning Direction-Finding Reflector Antenna (공중 회전 방향탐지 반사판 안테나 급전기용 초광대역 LPDA 안테나 설계)

  • Park, Young-Ju;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.7
    • /
    • pp.653-659
    • /
    • 2016
  • This paper proposes an ultra-wideband Log-Periodic Dipole Array(LPDA) antenna for the feeder of a reflector antenna to be used for airborne spinning direction-finding and detecting wideband signals. To obtain the ultra-wideband characteristics over the 20:1 bandwidth from S to Ka band, the radiation elements of the antenna were printed on a substrate and a wedge-typed dielectric supporter with robust structure was inserted between the substrates. Also, the center portion of the supporter was replaced by a styrofoam material to reduce the supporter weight. The 5-dB return loss of the designed LPDA antenna showed ultra-wideband characteristics, which are 37.57:1(1.09~40.95 GHz) in the simulation and 33.85:1(1.31~44.35 GHz) in the measurement. We achieved the required gains of 5.78 dBi in the simulation and 5.76 dBi in the measurement in the operating band. The proposed robust, light-weight, and ultra-wideband LPDA antenna confirmed that it can be applied for airborne applications.

On the Degradation of a UWB System Due to a Realistic TX-RX Antenna System

  • Jun, Min-Sik;Oh, Tae-Won
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.453-456
    • /
    • 2005
  • The ultra-wideband (UWB) signal radiation process in an antenna is different from that of a narrowband signal. In this paper, we study the degradation of the desired signal component according to the antenna structure and location of a receiver in a bipolar time-hopping UWB system. And we propose a receiver structure with an adaptive template waveform generator to compensate for the degradation caused by a realistic TX-RX antenna system.

  • PDF

Band-Notched Ultra-Wideband Antenna with Asymmetric Coupled-Line for WLAN and X-Band Military Satellite

  • Lee, Jun-Hyuk;Sung, Young-Je
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.34-37
    • /
    • 2013
  • This paper presents a novel ultra-wideband (UWB) antenna that rejects narrow and broad bands and is suitable for wireless communications. The base of the proposed antenna has a circular patch that can cover the UWB frequency range (3.1~10.6 GHz). The interference issues caused by co-existence within the UWB operation frequency are overcome by a design that uses a parallel-coupled asymmetric dual-line with a circular monopole antenna. The proposed antenna showed a stable radiation pattern, realized gain and reflection coefficient lower than -10 dB across the UWB operation bandwidth except for 5.15~5.85 GHz and 7.25~8.4 GHz. The fabrication, simulation, and measurement results obtained for the proposed antenna were in good agreement with the expected values.

Miniaturization of an Ultra-Wideband Antenna with Two Spiral Elements

  • Hong, Seok-Jin;Choi, Jae-Hoon
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.71-73
    • /
    • 2009
  • In this letter, novel antennas with two spiral elements are presented for ultra-wideband application. The original antenna consists of a T-shaped microstrip feed line, two spiral radiating elements, and a ground plane with two circular slots. It measures 30 mm ${\times}$ 40 mm ${\times}$ 1.6 mm. Spiral elements are used to increase the lower bandwidth limit. To further reduce the size of the antenna, the original antenna is cut in half by using the symmetry of the surface current distributions. The proposed antennas feature omnidirectional radiation patterns and good gain flatness.

  • PDF

Development of Ultra-Wideband Antennas

  • Chen, Zhi Ning
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.63-72
    • /
    • 2013
  • The ultra-wideband (UWB) spectrum available for commercial applications has offered us an opportunity to achieve high-speed wireless communications and high-accuracy location applications. As one of key research areas in UWB technology, a lot of innovative broadband and miniaturization techniques for UWB antennas have been greatly invented and developed for years. This paper reviews the development of UWB antenna design in the past decade. Starting with a brief introduction of the specific requirements and promising applications of UWB systems, the unique design challenges of UWB antennas are highlighted. Next, the important milestones of UWB antenna designs are briefed. After that, a variety of planar UWB antennas invented for broadband operation, miniaturization, and multiple functions are introduced. Last, the comments on the development of UWB antennas in future are shared.

Multiband-Notched UWB Antenna Using Folded Slots in the Feeding Structure

  • Ta, Son Xuat;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.1
    • /
    • pp.31-35
    • /
    • 2014
  • An ultra-wideband (UWB) circular monopole antenna with a multiband-notched characteristic is proposed. The multiband-notched filter consists of three different sized folded slots, which are distinctly assigned for the notched band at the 3.5-GHz WiMAX, 5-GHz WLAN, and 8-GHz ITU bands. The proposed antenna results in a measured ${\mid}S_{11}{\mid}$ < -10 dB, which completely covers the UWB band (3.1 10.6 GHz) with three notched bands at 3.5, 5.5, and 8.0 GHz. The antenna yields an omnidirectional radiation pattern and high radiation efficiency.

Ultra-wideband Antipodal Vivaldi Antenna with H-shaped Parasitic Patches (에이치(H)자 형태의 기생패치를 가진 초광대역 안티포달 비발디 안테나)

  • Jung, Dongkeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1642-1648
    • /
    • 2017
  • Ultra-wideband antennas are desired for several applications including satellite communications, radars, remote sensing system, telescopes, and microwave imaging systems. There are many types of wideband antenna structures, but the tapered slot Vivaldi antenna is advantageous in terms of cost, weight, scan angle capabilities, end-fire radiation, and ease of feeding and system integration. In this paper, a modified antipodal Vivaldi antenna is presented. A novel AVA with H-shaped parasitic patches has the capacity to improve the radiation characteristics in the whole operation frequencies. A prototype of the modified antenna with RT/duroid 5880 substrate of a relative dielectric constant (${\epsilon}_r$) of 2.2, and a thickness of 31mil is fabricated and experimentally studied as well. It measures a ${\mid}S_{11}{\mid}$ of less than -10dB and gain of 9-12dBi over 7.8-52.5GHz which shows reasonable agreement with the simulated one.