• Title/Summary/Keyword: Ultra-Precision-machining

Search Result 300, Processing Time 0.023 seconds

Precision Grinding Characteristics of Hardened Steel (경화 열처리강의 정밀연삭가공)

  • Choi, Won Sik;Bae, Dae Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.6
    • /
    • pp.355-361
    • /
    • 2005
  • In this study, the effects of the maximum undeformed chip thickness on grinding characteristics of hardened steel in down-grinding have been investigated. The meaured grinding forces become larger as the workpiece velocity increases. The specific energy, e decreases as the maximum undeformed chip thickness increase. When the maximum undeformed chip thickness is the same, the specific energy, e decreases as the grain size increases.

HIGH-SPEED MILLING FOR DIE AND MOLD MAKING

  • Na, T.kagawa
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.51-60
    • /
    • 2000
  • High-speed milling machine is being sold mainly in the market of die and mold industries, because it reduces machining time greatly as proportion to the spindle speed of machine tool. From the experimental milling tests, it has been cleared that the ball end mill is quite suitable for high speed milling and also tool wear reduces in higher speed milling condition. And a new milling concept with ultra high speed over 100, 000 rpm is proposed for solving the various problems such as NC cutter path generation and NC feed conformity etc.

  • PDF

Development of Automatic Tool Changer of SMA Tool Holder (SMA를 이용한 공구홀더의 자동공구교환장치 개발)

  • Lee, Sungcheul;Ro, Seung-Kook;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Micromanufacturing is a useful system for reducing energy consumption. For micromanufacturing, tool clamping and workpiece clamping are important components to realize the machining process. Therefore, a shape memory alloy (SMA) ring type tool holder is developed. In addition, this holder needs cooling and heating processes to execute the tool clamping process. This study suggests a cooling/heating device based on peltier elements. The device will be applied to the heating/cooling process of an automatic tool changer (ATC) for the SMA tool holder. This study introduces the configuration and operating principle of the proposed ATC system. The description and prototype evaluation of this system were given. Plastic bolt and aluminum block were selected to enhance the cooling performance, and the installed tool was changed in 17 s during the experiments.

Cutting Chip and Surface Roughness in Micro Groove Cutting of Brass (황동의 Micro Groove 가공시 절삭칩과 표면거칠기)

  • Min, Kyung Tak;Jang, Ho Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2010
  • Recently optical and electric and electronic forms in the field of ultra fine patterns has been used extensively, and techniques of the optical parts are required that can precision-machine this micro-patterns such as V or R-shaped micro-groove patterns. In this study, V and R type, shaping the way micro groove brass machining process to characterize the material feed rate and cutting depth and the V and R as a variable brother, using two kinds of diamond tools for each picture shape and surface roughness caused by conditions such as chips, processed through the analysis of effects of geometry and analysis such as precision machining.

A Study on Grinding Characteristics of Aspherical Glass Lens core of High-pixel Digital Camera in Diamond Grinding Process (고화소 디지털 카메라 비구면 Glass렌즈 초정밀연삭 특성에 관한 연구)

  • 현동훈;이승준
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.31-36
    • /
    • 2003
  • Electronic or measuring instruments equipped with aspherical lens have recently been used since aspherical lens is more effective than spherical one. for the mass production of aspherical lenses, specific molds with precisely machined cores should be prepared. Some researches on the aspherical lens machining have been carried out to date. However, ultra-precise finding of aspherical or mold core has not been fully studied. In this study, the ultra-precise grinding and evaluating system were established to investigate the finding characteristics of aspherical lenses. Unlike conventional grinding process, since a highly-precise lathe were operated in a clean room without vibration the experimental results can be very useful for further studies on ultra-precise grinding process.

A Study on Cutting Conditions and Finishing Machining of Si Material Using Laser Assisted Module (레이저 보조 모듈을 이용한 Si 소재의 절삭조건 및 보정가공에 관한 연구)

  • Young-Durk Park
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.15-21
    • /
    • 2023
  • In this study, a diamond turning machine and a laser-assisted machining module were utilized for the complex combined cutting of aspheric shapes and fine patterns on the surface of high-hardness brittle material, silicon. The analysis of material's form accuracy and corrective machining was conducted based on key factors such as laser output, rotational speed, feed rate, and cutting depth to achieve form accuracy below 1 ㎛ and surface roughness below 0.1 ㎛. The cutting condition and corrective machining methods were investigated to achieve the desired form accuracy and surface roughness. The rotational speed of the spindle and the linear feed rate of the diamond turning machine were varied in five stages for the cutting condition test. Surface roughness and form accuracy were measured using both a contact surface profilometer and a non-contact surface profilometer. The experimental results revealed a tendency of improved surface roughness with increased rotational speed of the workpiece, and the best surface roughness and form accuracy were observed at a feed rate of 5 mm/min. Furthermore, based on the cutting condition experiments, corrective machining was performed. The experimental results demonstrated an improvement in form accuracy from 0.94 ㎛ to 0.31 ㎛ and a significant reduction in the average value of the surface roughness curve from 0.234 ㎛ to 0.061 ㎛. This research serves as a foundation for future studies focusing on the machinability in relation to laser output parameters.

Analysis of Micro Machining Characteristics using End-milling and Its Applications (초소경 엔드밀링을 이용한 미세 가공특성 분석 및 응용가공)

  • Choi, Hwan-Jin;Park, Eun-Suk;Jeon, Eun-Chae;Je, Tae-Jin;Choi, Doo-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1279-1284
    • /
    • 2012
  • Micro structures which are widely used at various fields are commonly fabricated by lithograph, etching and laser methods. Recently, with the emergence of micro tools and ultra-precision machine tools, fabrication of the micro structures obtained using end-milling are studied. However, there are some problems due to the diameter of the micro end-mill getting smaller below $100{\mu}m$. The micro run-out resulted from miniaturization of end-mills have influence seriously on accuracy of micro structures. The error of run-out with a tooling jig showed a decrease of about $9.3{\mu}m$. Furthermore, micro structures with width of $30{\mu}m$ could be applied through experiments of slot machining obtained using 30 and $50{\mu}m$ end-mill. Also, narrow angle structures with $30^{\circ}$ angle could be applied through analysis of machining acute angle structures. Based on basic experiments, micro fluidics channels and spiral patterns for air bearing were machined.

Tapping Machine of World′s Fastest Speed (초고속 태핑머신 개발)

  • 김선호;김동훈;김선민;이돈진;이선규;안중환;이상규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.382-386
    • /
    • 2002
  • The tapping is machining process that makes a female screw on the parts to be assembly together. It is used for the high-speed tapping machine with synchronizing function for the high productivity. This paper describes the development of the ultra high-speed tapping machine with 10,000rpm. The key factors in the tapping speed are the acceleration/deceleration velocity and the synchronizing errors between the spindle motor and feeding motor. To minimizing acceleration/deceleration time, the low inertia spindle with synchronous built-in servo motor is developed. To minimizing synchronizing errors, the tapping cycle algorithm under open architecture CNC environment is optimized. The developed tapping machine has 0.13sec/10,000rpm in acceleration/deceleration time and the synchronizing error below 4.0%. It has 0.55sec for cycle time of one female screw, M3 tap, 2 times depth of tap diameter.

  • PDF

A Study of Aluminum Reflector Manufacturing in Diamond Turning Machine (다이아몬드 터닝머신을 이용한 알루미늄반사경의 절삭특성)

  • 김건희;고준빈;김홍배;원종호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.1-5
    • /
    • 2002
  • A 110 m diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fsbricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an A1 substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632.8nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated A1 alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

A Study on the Ultra-Precision Polishing Technique for the Upper Surface of the Micro-Channel Structure (미세채널 구조물 상부의 초정밀 연마 기술 연구)

  • 강정일;이윤호;안병운;윤종학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.313-317
    • /
    • 2003
  • Micro-Channel ultra-precision polishing is a new technology used in magnetic field-assisted relishing. In this paper, an electromagnet or the i18 of test system was designed and manufactured. A size of magnetic abrasive is used on 25~75${\mu}{\textrm}{m}$ and for the polish a micro-channel upper part. A surface of channel which is not even is manufactured using magnetic abrasive finishing at upper surface of micro-channel. As a result, the surface roughness rose by 80% after upper surface of micro- channel was polished up 8 minutes by polishing.

  • PDF