• 제목/요약/키워드: Ultra-Precision-machining

검색결과 300건 처리시간 0.021초

Spark Plasma Sintering and Ultra-Precision Machining Characteristics of SiC

  • Son, Hyeon-Taek;Kim, Dae-Guen;Park, Soon-Sub;Lee, Jong-Hyeon
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.559-569
    • /
    • 2010
  • The liquid-phase sintering method was used to prepare a glass lens forming core composed of SiC-$Al_2O_3-Y_2O_3$. Spark plasma sintering was used to obtain dense sintered bodies. The sintering characteristics of different SiC sources and compositions of additives were studied. Results revealed that, owing to its initial larger surface area, $\alpha$-SiC offers sinterability that is superior to that of $\beta$-SiC. A maximum density of $3.32\;g/cm^3$ (theoretical density [TD] of 99.7%) was obtained in $\alpha$-SiC-10 wt% ($6Al_2O_3-4Y_2O_3$) sintered at $1850^{\circ}C$ without high-energy ball milling. The maximum hardness and compression stress of the sintered body reached 2870 Hv and 1110 MPa, respectively. The optimum ultra-precision machining parameters were a grinding speed of 1243 m/min, work spindle rotation rate of 100 rpm, feed rate of 0.5 mm/min, and depth of cut of $0.2\;{\mu}m$. The surface roughnesses of the thus prepared final products were Ra = 4.3 nm and Rt = 55.3 nm for the aspheric lens forming core and Ra = 4.4 nm and Rt = 41.9 for the spherical lens forming core. These values were found to be sufficiently low, and the cores showed good compatibility between SiC and the diamond-like carbon (DLC) coating material. Thus, these glass lens forming cores have great potential for application in the lens industry.

마이크로 앤드밀링에 의한 미소 부품 가공기술 연구 (A Study on the Micro Parts Manufacturing Technology by Micro End-milling)

  • 제태진;이종찬;최환;이응숙
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.167-172
    • /
    • 2003
  • The machining method by using end-milling tool has been applying in machining structures of various shapes because of the availability. Recently, all kinds of industries based on the parts of micro shape are developing, and the demands of mechanical micro machining technology are Increasing suddenly to produce these parts. According to such changes, the technology of the micro end-milling machining is applying as one of the most important machining means. This research is to aim at developing machining technology for various micro structures using micro end-mill. This paper introduces micro mechanical machining system with ultra precision, and demonstrates methods manufacturing all sorts of parts and moldings for industry and examples of applicable machining by using micro end-milling tool of micro sizes from hundreds to tens in diameter.

  • PDF

Development of The Multi Forming Type Ultra Precision Die for Sheet Metal ( Part I )- Production Part and Strip Process Layout -

  • Sim, Sung-Bo;Jang, Chan-Ho;Sung, Yul-Min
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.253-257
    • /
    • 2001
  • This study reveals the sheet metal working with multi-forming type ultra precision process. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena, die structure, machining condition for die making, die material, heat treatment of die components, know-how and so on. In this study, we designed and constructed a multi-forming ultra precision progressive die as a bending and drawing working of multi-stage and performed through the try out for thin sheet metal. This part I of papers related to the analysis of production part and strip process layout design through the metal forming simulation by DEFORM and IDEAS.

  • PDF

실험 계획법을 이용한 초정밀 연마 가공에 관한 연구 (A Study on the Ultra-precision Mirror Finishing Using the System of Experiments)

  • 김홍배
    • 한국생산제조학회지
    • /
    • 제7권5호
    • /
    • pp.134-139
    • /
    • 1998
  • There have been so manu study in the ultra-precision mirror finishing. Already Using system of experiments extract factors effecting surface roughness and find optimal machining conditions in 40${\mu}{\textrm}{m}$, 30${\mu}{\textrm}{m}$, 15${\mu}{\textrm}{m}$ abrasive film. So in this study, Using Abrasive film of 12~3${\mu}{\textrm}{m}$ extract factors effecting surface roughness and results are follows; Factor A(film feed) in 12${\mu}{\textrm}{m}$ and 5${\mu}{\textrm}{m}$ abrasive film, Factor A(film feed) and B(applied force) in 9${\mu}{\textrm}{m}$ abrasive film, Factor C(grinding speed) in 3${\mu}{\textrm}{m}$ abrasive film are main factor effecting surface roughness.

  • PDF

웨이퍼 본딩 장비용 Uniform Press 개발 (Development of Uniform Press for Wafer Bonder)

  • 이창우;하태호;이재학;김승만;김용진;김동훈
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권4호
    • /
    • pp.265-271
    • /
    • 2015
  • 스마트폰을 비롯한 고성능 모바일 전자기기의 발전에 따라서 경박단소한 전자부품의 요구가 커지고 있으며 이를 위해서 새로운 패키징 방법이 탄생하고 있다. 이러한 새로운 패키징 공정에서 웨이퍼 본딩 공정이 많이 요구되고 있다. 웨이퍼 본딩에서 많이 활용되는 방법이 열 압착 방법으로 가열된 헤드로 웨이퍼에 압력을 가하여 본딩하는 방법이다. 열 압착 방법에서 요구되는 공정조건은 온도 균일성과 Uniform Press이다. 온도 균일성은 마이크로 히터와 열 해석을 통한 설계로 비교적 쉽게 요구조건을 만족 시킬 수 있지만 Uniform Press를 가공과 조립으로만 요구조건을 만족시키기 위해서는 매우 높은 정밀도가 요구된다. 열 압착 방법은 고온에서 동작되므로 열 변형에 대한 기계적인 오차를 고려하여 설계, 가공, 조립이 진행되어야하므로 많은 어려움이 따른다. 본 연구에서는 Air 스프링과 Metal Form의 자가 보정장치를 이용하여 가공, 조립, 열 변형으로 발생하는 기계적 오차를 보상하여 성능과 신뢰성을 향상시켰다.

핫 프레스 성형용 EL-Max 소재 초정밀 연삭 가공에 관한 연구 (Study on Ultra-precision Grinding of EL-Max Material for Hot Press Molding)

  • 박순섭;고명진;김건희;원종호
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1267-1271
    • /
    • 2012
  • Demand for optical glass device used for lighting could increase rapidly because of LED lighting market growth. The optical glass devices that have been formed by hot press molding process the desired optical performance without being subjected to mechanical processing such as curve generation or grinding. EL-Max material has been used for many engineering applications because of their high wear resistance, high compressive strength, corrosion resistant and very good dimensional stability. EL-Max is very useful for a glass lens mold especially at high temperature and pressure. The performance and reliability of optical components are strongly influenced by the surface damage of EL-Max during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified EL-Max glass lens mold. To get the required qualified surface of EL-Max, the selection of type of the diamond wheel is also important. In this paper, we report best grinding conditions of ultra-precision grinding machining. The grinding machining results of the form accuracy and surface roughness have been analyzed by using Form Talysurf and NanoScan.

초정밀 가공기를 위한 환경 제어용 셀에 관한 실험 및 해석적 연구 (Numerical Analysis and Experiment of Environmental Control Cell for Ultra-nano Precision Machine)

  • 오상준;김철숙;조지현;김동연;서태범;노승국;박종권
    • 한국생산제조학회지
    • /
    • 제22권5호
    • /
    • pp.824-830
    • /
    • 2013
  • In ultra-precision machining, the inside temperature should be controlled precisely. The important factors are environmental conditions (outside temperature, humidity) and temperature conditions (cutting heat, spindle heat). Thus, in this study, an environmental control cell for the ultra-precision machine that could control the inside temperature and minimize effects of the surrounding environment to achieve a thermal deformation of less than 400nm of a specimen was designed and verified through C.F.D. Further, a method that could control the temperature precisely by using a blower, heat exchanger and heater was evaluated. As a result, this study established a C.F.D technic for the environmental control cell, and the specimen temperature was controlled to be within $17.465{\pm}0.055^{\circ}C$.

Glass Lens 성형용 WC Core 표면조도의 DLC 코팅 효과 (DLC Coating Effect of WC Core Surface Roughness for Glass Molding Lens)

  • 김현욱;정상화;이동길;김상석;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.487-488
    • /
    • 2006
  • As DLC coating possesses such features as, high hardness, high elasticity, abrasion resistance and chemical stability, there have been exerted continuous efforts in research works in a variety of fields, and this technology has also been applied widely to industrial areas. In this research work, the optimal grinding condition was identified using Microlens Process Machine in order to contribute to the development of aspheric glass which is to be used for mobile phone module having 2 megapixel and $2.5{\times}$ zoom, and mold core (WC) was manufactured having performed ultra-precision machining and effects of DLC coating on shape accuracy(P-V) of mold core and surface roughness(Ra) as well were measured and evaluated.

  • PDF

마이크로 금형 가공 및 사출성형에 관한 연구 (Micro Parts Machining and Injection Molding Technology)

  • 최두선;제태진;이응숙;신보성
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.452-457
    • /
    • 2003
  • As a fundamental study on developing elements with micro shape, micro mold parts machining and experiment of injection molding using it were performed. The ultra precision micro machining system with high functionality was fabricated, and utilized in the machining of micro parts. By using this machining system and micro end-mill tool, a micro circle column structure of high aspect ratio, diameter 60 $\mu\textrm{m}$, height 500 $\mu\textrm{m}$, was fabricated. And a micro lens molds were fabricated by using ball end-mill tool of 300 $\mu\textrm{m}$ diameter and diamond fly-cut tool of 150 $\mu\textrm{m}$ radius. A micro injection molding machine, which is clamping force 1.75 ton, injection capacity 2.8cc, was fabricated for injection molding experiment using micro molds. The injection molding experiment was performed by using the injection molding machine, micro cylinder structures and lens molds. This paper introduces these micro machining system and injection molding machine and demonstrates examples of injection molding using fabricated molds.

  • PDF

UPCU의 안정성 검토 및 초정밀 위치결정 (Stability Analysis and Ultra-Precision Positioning for UPCU)

  • 김우진;김재열;윤성운;장종훈;김유홍;최철준
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.48-53
    • /
    • 2005
  • The world, coming into the 21st century, is preparing a new revolution called a knowledge-based society after the industrial society. The interest of the world is concentrated on information technology, nano-technology and biotechnology. In particular, the nano-technology of which study was originally started from an alternative for overcoming semiconductor micro-technology. It can be applied to most industry subject such as electronics, information and communication, machinery, chemistry, bioengineering, energy, etc. They are emerging into the technology that can change civilization of human beings. Specially, ultra precision machining is quickly applied to nano-technology in the field of machinery. Lately, with rapid development of electronics industry and optic industry, there are needs for super precision finishing of various core parts required in such related apparatuses. This paper handles stability of a super precision micro cutting machine that is a core unit of such a super precision finisher, and analyzes the results depending on the hinge type and material change, using FEM analysis. By reviewing the stability, it is possible to achieve the effect of basic data collection for unit control and to reduce trials and errors in unit design and manufacturing.

  • PDF