• Title/Summary/Keyword: Ultra-Precision Fabrication

Search Result 80, Processing Time 0.036 seconds

테이블의 변형을 최소화하는 스테이지 구조 설계

  • Jeong, Gyu-Won;Park, Baek-Han
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.15-18
    • /
    • 2007
  • As the line width of the pattern become thin more and more, the accuracy of ultra-precision stage should be increased. Various type stages have been developed and used in fabrication phase and inspection lab. Furthermore the line with become several tens of nanometer recently. We need ultra high precision stage. In this paper a new type stage is proposed in order to reduce the deformation of working table. The table is supported by several flexure hinges and actuated by a PZT. The local deformation is analyzed and the vibratory motion is also examined by FEM package.

  • PDF

Design, Simulation and Fabrication of a Quadstable Monolithic Mechanism (4 중 안정성 일체형 메커니즘의 설계, 해석 및 제작)

  • Han, Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.617-624
    • /
    • 2007
  • This paper presents a novel quadstable monolithic mechanism (QsMM) which provides four stable equilibrium positions within its operation range. The quadstable mechanism has been realized from the use of both X- and Y-directional bistable structures which use curved snapping beams. A millimeter-scale brass mechanism was fabricated by ultra-precision milling to test the quadstability and the displacement-load behavior, and the prototype clearly demonstrated four distinct stable positions in its millimeter-scale planar operation. We discuss the design concept, finite element simulation for static and transient responses, fabrication by ultra-precision milling, and experimental measurement of the proposed quadstable mechanism.

Micro-groove Fabrication by Wire Electrochemical Machining with Ultra Short Pulses (와이어 펄스 전해 가공을 이용한 미세 홈 제작)

  • Na Chan Wook;Park Byung Jin;Kim Bo Hyun;Choi Deok Ki;Chu Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.37-44
    • /
    • 2005
  • In this paper, wire electrochemical machining (Wire ECM) with ultra short pulses is presented. Platinum wire with $10{\mu}m$ diameter was used as a tool and 304 stainless steel was locally dissolved by electrochemical machining in 0.1M $H_{2}SO_4$ electrolyte. Wire ECM can be easily applied to the fabrication of arbitrarily shaped micro-grooves without tool wear. The change of machining gap according to applied pulse voltage, pulse on-time and pulse period was investigated and the optimal pulse condition for stable machining was obtained. Using this method, various micro-grooves with less than $20{\mu}m$ width were fabricated.

Research on ultra-precision fine-pattern machining through single crystal diamond tool fabrication technology (단결정 다이아몬드공구 제작 기술을 통한 초정밀 미세패턴 가공 연구)

  • Jung, Sung-Taek;Song, Ki-Hyeong;Choi, Young-Jae;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.63-70
    • /
    • 2020
  • As the consumer market in the VR(virtual reality) and the head-up display industry grows, the demand for 5-axis machines and grooving machines using on a ultra-precision machining increasing. In this paper, ultra-precision diamond tools satisfying the cutting edge width of 500 nm were developed through the process research of a focused ion beam. The material used in the experiment was a single-crystal diamond tool (SCD), and the equipment for machining the SCD used a focused ion beam. In order to reduce the influence of the Gaussian beam emitted from the focused ion beam, the lift-off process technology used in the semiconductor process was used. 2.9 ㎛ of Pt was coated on the surface of the diamond tool. The sub-micron tool with a cutting edge of 492.19 nm was manufactured through focused ion beam machining technology. Toshiba ULG-100C(H3) equipment was used to process fine-pattern using the manufactured ultra-precision diamond tool. The ultra-precision machining experiment was conducted according to the machining direction, and fine burrs were generated in the pattern in the forward direction. However, no burr occurred during reverse machining. The width of the processed pattern was 480 nm and the price of the pitch was confirmed to be 1 ㎛ As a result of machining.

Model-based process control for precision CNC machining for space optical materials

  • Han, Jeong-yeol;Kim, Sug-whan;Kim, Keun-hee;Kim, Hyun-bae;Kim, Dae-wook;Kim, Ju-whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.26-26
    • /
    • 2003
  • During fabrication process for the large space optical surfaces, the traditional bound abrasive grinding with bronze bond cupped diamond wheel tools leaves the machine marks and the subsurface damage to be removed by subsequent loose abrasive lapping. We explored a new grinding technique for efficient quantitative control of precision CNC grinding for space optics materials such as Zerodur. The facility used is a NANOFORM-600 diamond turning machine with a custom grinding module and a range of resin bond diamond tools. The machining parameters such as grit number, tool rotation speed, work-piece rotation speed, depth of cut and feed rate were altered while grinding the work-piece surfaces of 20-100 mm in diameter. The input grinding variables and the resulting surface quality data were used to build grinding prediction models using empirical and multi-variable regression analysis methods. The effectiveness of the grinding prediction model was then examined by running a series of precision CNC grinding operation with a set of controlled input variables and predicted output surface quality indicators. The experiment details, the results and implications are presented.

  • PDF

Design and Fabrication of a Brushless DC Motor with 3mm Outer Diameter (외경 3mm급 브러시레스 DC 모터의 설계 및 제작에 관한 연구)

  • Jung In-Soung;Kim Joo-Han;Choi Jun-Hyuk;Hur Jin;Sung Ha-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.755-757
    • /
    • 2004
  • A design and fabrication result of a ultra-small brushless DC motor is presented. The outer diameter of the motor is 3mm. This motor is designed to 3 phase coreless winding, and operated with synchronous type driver. The experimental results for back EMF value, static torque and speed characteristics are presented and discussed.

  • PDF

A Study on the Optical Element Alignment of Ultra Precision Multi-Axis Stage (극초정밀 다축 위치제어장치의 광소자 정렬 특성에 관한 연구)

  • Jeong S.H.;Cha K.R.;Kim H.U.;Choi S.B.;Kim G.H.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1190-1193
    • /
    • 2005
  • In recent years, as the demands of VBNS and VDSL increase, the development of kernel parts of optical communication such as PLC(Planar Light Circuit), Coupler, and WDM elements increases. The alignment and the attachment technology are very important in the fabrication of optical elements. In this paper, the optical alignment characteristics of multi-axis ultra precision stage were studied. The alignment algorithms were studied for applying to the ultra precision multi-axis stage. The alignment algorithm is comprised of field search and peak search algorithms. The contour of optical power signals can be obtained by field search and the precise coordinate can be found out by peak search. Two kinds of alignments, such as 1 ch. input vs. 1 ch. output optical stack, and 1 ch. input vs. 8 ch. output PLC stacks were performed for investigating the alignment characteristics.

  • PDF

진공용 나노 스테이지 개발을 위한 고찰

  • 홍원표;강은구;이석우;최헌종
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.223-228
    • /
    • 2004
  • Miniaturization is the central theme in modern fabrication technology. Many of the components used in modern products are becoming smaller and smaller. The direct write FIB technology has several advantages over contemporary micromachining technology, including better feature resolution with low lateral scattering and capability of maskless fabrication. Therefore, the application of FIB technology in micro fabrication has become increasingly popular. In recent model of FIB, however the feeding system has been a very coarse resolution of about a few $\mu\;\textrm{m}$. It is not unsuitable to the sputtering and the deposition to make the high-precision structure in micro or macro scale. Our research is the development of nano stage of 200mm strokes and 10nm resolutions. Also, this stage should be effectively operating in ultra high vacuum of about $1\times10^{-7}$ torr. This paper presents the concept of nano stages and the discussion of the material treatment for ultra high vacuum.

  • PDF