• 제목/요약/키워드: Ultra precision machining system

검색결과 95건 처리시간 0.021초

대면적 미세가공시스템 및 장비 개발 (Development of a Large Surface Mechanical Micro Machining System & Machine)

  • 박천홍;오정석;심종엽;황주호
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.761-768
    • /
    • 2011
  • The large surface micro machining system includes the equipments and processes for manufacturing the ultra precision micro patterned products with large surface through the mechanical machining. Recent major issue on the micro machining technology may be the development of optical parts for the back light unit of display which has the largest market. This special issue makes up with three parts; the large surface micro machining system and machine, machining process and forming process. In this paper, the state-of-the-art and core technology of large surface micro machining system is introduced with focus on the manufacturing technology for the back light unit of LCD TV. Then, some research results on the development of a roll die lathe is introduced which involves the concept of machine design, improvement of thermal characteristics in the spindle system, improvement of relative parallelism and straightness between spindle system and long stroke feed table, machining of micro pitch patterns. Finally, the direct forming process is introduced as the future work in the large surface micro machining field.

연속전해드레싱을 적용한 머신어블 세라믹의 초정밀 가공 (Ultra Precision Machining of Machinable Ceramic by Electrolytic In-process Dressing)

  • 원종구;이은상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.223-226
    • /
    • 2002
  • Appropriate design/manufacturing conditions, to give outstanding material properties to the $Si_3$$N_4$-BN and AIN-BN based composite materials, will be investigated using the experimental design methods. Ultra-precision machinability of the developed ceramics will be systematically studied in the viewpoint of microstructure and material properties. Also, finite element methods will be applied to define basic principles to significantly improve machinability and various properties. Basic experiments will be performed to develop optimum ultra-precision machining technologies for the developed ceramics. For ultra-precision lapping machining, need to develop a ultra-precision lapping system, suitable metal bonded diamond wheel, and appropriate condition of ultra-precision lapping machining.

  • PDF

알루미늄 합금의 초정밀 선삭 가공에 있어서 PCD와 MCD 공구의 절삭 특성 비교 (The Comparison of Cutting Characteristics of PCD and MCD Tools in the Ultraprecision Turning of Aluminum Alloy)

  • 김형철;함승덕;홍우표;박영우;김기수
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.68-75
    • /
    • 2000
  • This paper presents the construction of an ultra-precision machining system and machining experiments using the developed system. The system is composed of air bearing system, granite bed, air pad, and linear feeding mechanism. The cutting conditions have great effect on the surface quality in ultra-precision machining. the ultra-precision machining is mainly processed by several ${\mu}{\textrm}{m}$ depth of cut and feed rate. For this, tools with sharper cutting edge and less tool wear are needed. To satisfy these requirement, diamond is generally used as a tool material for ultra-precision machining. In order to evaluate the cutting characteristics of the PCD and MCD tools on the aluminum alloy, the machining experiments performed using the developed system.

  • PDF

미세가공 시스템을 이용한 미세 그루브 가공실험 (Micro-groove Cutting Experiments using Micro-Machining System)

  • 이선우;이동주;이응숙;제태진
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.263-268
    • /
    • 2001
  • The needs for precision machining of micro to milli parts have been increased as the industry require high quality products, especially for the micro-machining of IT products. The ultra-precision machining system is essential for the micro machining of fine structures, which insures machining accuracy, low systematic and random error and repeatability. In this study, we developed micro machining system, which is equipped with air bearing stage for ultra precision machining and also we present the results of V-grooving experiments, conducted by the developed system, to verify the performance of system. The results show that the machined V-grooving had good accuracy with repeatable stability.

  • PDF

파워바이스 증력장치 최적설계에 관한 연구 (A Study on the Optimum Design of Power Vice-Strengthening Device)

  • 이경일;정윤수;김재열
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.69-74
    • /
    • 2017
  • In the current machining industry, machining precision is necessary and machining is being carried out. In this ultra-precision machining industry, the fixation of the workpiece is very important and the degree of machining depends on the degree of fixation of the workpiece. In ultra-precision machining, various methods, such as using a vise chuck or the like and using bolt nut coupling, are used for fixing a workpiece to an existing machine tool. In particular, when the precision gripping force of the jig is insufficient during machining of the ultra-precision mold parts, the machining material shakes due to the vibration or friction, and the machining precision is lowered. In the ultra-precision machining of power transmission parts, such as gears, the accuracy of the product is then determined. In addition, the amount of heat generated during machining has a significant effect on the machining accuracy. This is because the vibration value changes according to the grasp force of the jig that fixes the workpiece, and the change in the calorific value due to the change in the main shaft rotation speed of the ultra-precision machining. The increase in the spindle rotation speed during machining decreased the heat generation during machining, and the machining accuracy was also good, and it was confirmed that the machining heat changed according to the fixed state of the workpiece and the machining accuracy also changed. In this study, we try to optimize the driving part of the power vise by using structural analysis, rather than the power vise, using the basic mechanical-type power unit.

초정밀가공의 재질에 따른 발열과 가공정밀도에 관한 연구 (A Study on Heat Generation and Machining Accuracy According to Material of Ultra-precision Machining)

  • 이경일;김재열
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.63-68
    • /
    • 2018
  • At present, ultra-precision cutting technology has been studied in Korean research institutes, focusing on development of ultra-precision cutting tool technology and ultra-precision control engineering. However, the developed technologies are still far behind advanced countries. It focuses on metals including aluminum, copper and nickel, and nonmetals including plastics, silicone and germanium which require high precision while using a lathe. It is hard to implement high precision by grinding the aforementioned materials. To address the issue, the ultra-precision cutting technology has been developing by using ultra-precision machine tools very accurate and strong, and diamond tools highly abrasion-resistant. To address this issue, this study aims to conduct ultra-precision cutting by using ECTS (Error Compensation Tool Servo) to improve motion precision of elements and components, and compensate for motion errors in real time. An IR camera is used for analyzing cutting accuracy differences depending on the heat generated in diamond tools in cutting to examine the heat generated in cutting to study cutting accuracy depending on generated heat.

우주관측용 광학계의 적외선 초자 초정밀 가공 기술개발 (Development of the Ultra Precision Machining of IR Material for Space Observation Optical System)

  • 양순철;원종호
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.9-14
    • /
    • 2010
  • Using an IR (infrared) optical system of observation and research were performed long before. Nowadays satellites equipped with IR optical system observe the earth and universe. In this paper, we developed the IR optical system for main payload of the STSAT-3 (Science and Technology Satellite -3). We studied the ultra precision machining technique to fabricate FPL-53 lenses which is the IR optical material for space observation camera of the STSAT-3. DOE (Design of Experiment) was used to find best machining characteristic for FPL-53. Finally we fabricated FPL-53 aspheric lens with the form accuracy of P-V $0.36\;{\mu}m$.

Fast Tool Servo를 이용한 대구경 반사경의 초정밀 가공 및 기상 형상 측정 (Ultra-Precision Machining Using Fast Tool Servo and On-Machine Form Measurement of Large Aspheric Mirrors)

  • 김의중;송승훈;김민기;김태형
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.129-134
    • /
    • 2000
  • This paper presents the development of ultra-precision machining process of large aspheric aluminum mirrors with a maximum diameter of 620 mm. An ultra-precision machine, "Nanoturn60", developed by Daewoo Heavy Industries Ltd. is used for machining and motion errors of the machine are compensated by using the FTS developed by IAE(Institue for Advanced Engineering) during the machining process. To check the form accuracy of machined aspheric surfaces, on-machine form measurement system is developed. This measurement system consists of air bearing touch probe, straight edge, and laser sensor. With in-process error compensation by FTS(Fast Tool Servo), aspheric mirrors with the from accuracy of submicron order are obtained. obtained.

  • PDF

초정밀 FTS 시스템을 이용한 CNC Lathe 스핀들 이송오차 보상 및 가공정밀도 향상 (The Improvement of Machining Accuracy and Compensation of Feeding Error in CNC Lathe Using Ultra Precision Fast Tool)

  • 김재열;곽남수
    • Tribology and Lubricants
    • /
    • 제27권1호
    • /
    • pp.13-18
    • /
    • 2011
  • The ultra-precision products which recently experienced high in demands had included the large areas of most updated technologies, for example, the semiconductor, the computer, the aerospace, the media information, the precision machining. For early 21st century, it was expected that the ultra-precision technologies would be distributed more throughout the market and required securing more nation-wise advancements. Furthermore, there seemed to be increasing in demand of the single crystal diamond tool which was capable of the ultra-precision machining for parts requiring a high degree of complicated details which were more than just simple wrapping and policing. Moreover, the highest degree of precision is currently at 50 nm for some precision parts but not in all. The machining system and technology should be at very high performed level in order to accomplish this degree of the ultra-precision.